123
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on Properties of Novel Enteromorpha-Based Antioxidation Compound Inhibitors for Spontaneous Combustion of Coal

, , , , , , , , & show all
Pages 1341-1361 | Received 15 Jun 2022, Accepted 16 Aug 2022, Published online: 22 Aug 2022

References

  • Abdulsalam, J., et al. (2022) ‘Self-Heating characteristics of materials for producing activated carbon’, Int. J. Coal Prep. Util., 42(5), pp. 1499–515. doi: 10.1080/19392699.2020.1729138.
  • Avila, C., T. Wu, and E. Lester 2014. Petrographic characterization of coals as a tool to detect spontaneous combustion potential. Fuel 125:173–82. doi:10.1016/j.fuel.2014.01.042.
  • Chen, L. F., et al. (2011) ‘Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water’, Langmuir, 27(14), pp. 8998–9004. doi: 10.1021/la2017165.
  • Cheng, W., et al. (2017) ‘An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties’, Fuel, 210(April), pp. 826–35. doi: 10.1016/j.fuel.2017.09.007.
  • Cho, M., et al. (2011) ‘Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed’, Food Chem., 127(3), pp. 999–1006. doi: 10.1016/j.foodchem.2011.01.072.
  • Du, B., Y. Liang, and F. Tian 2021. Detecting concealed fire sources in coalfield fires: An application study. Fire. Saf. J. 121 (January):103298. doi:10.1016/j.firesaf.2021.103298.
  • Feng, Y., et al. 2017. Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. J. Colloid Interface Sci. 502:52–58. doi:10.1016/j.jcis.2017.04.086.
  • Huang, Z., et al. (2019) ‘Research on a new composite hydrogel inhibitor of tea polyphenols modified with polypropylene and mixed with halloysite nanotubes’, Fuel, 253(December 2018), pp. 527–39. doi: 10.1016/j.fuel.2019.03.152.
  • Jianliang, X., et al. (2022) ‘Durable hydrophobic Enteromorpha design for controlling oil spills in marine environment prepared by organosilane modification for efficient oil-water separation’, J. Hazard. Mater., 421(August 2021), p. 126824. doi: 10.1016/j.jhazmat.2021.126824.
  • Lawal, A. I., et al. (2022) ‘On the Performance Assessment of ANN and Spotted Hyena Optimized ANN to Predict the Spontaneous Combustion Liability of Coal’, Combust. Sci. Technol., 194(7), pp. 1408–32. doi: 10.1080/00102202.2020.1815196.
  • Li, J., et al. (2018) ‘Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion’, Fuel Process. Technol., 171(September 2017), pp. 350–60. doi: 10.1016/j.fuproc.2017.09.027.
  • Liang, Y., et al. (2021) ‘Experimental investigation on microstructure evolution and spontaneous combustion properties of aerobic heated coal’, Fuel, 306(June), p. 121766. doi: 10.1016/j.fuel.2021.121766.
  • Luo, C., et al. 2022. Preparation of superabsorbent lignin-based composite inhibitor and research on its prevention and control characteristics of coal spontaneous combustion. Combust. Sci. Technol. 00 (00):1–21. doi:10.1080/00102202.2022.2093111.
  • Onifade, M., and B. Genc 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Pandey, J., et al. (2015) ‘Investigation of the Role of Fire Retardants in Preventing Spontaneous Heating of Coal and Controlling Coal Mine Fires’, Fire Technol, 51(2), pp. 227–45. doi: 10.1007/s10694-012-0302-9.
  • Qiao, L., et al. 2016. Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera. Carbohydr Polym 136:1307–14. doi:10.1016/j.carbpol.2015.10.030.
  • Qin, B., et al. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Ren, X., et al. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard. Mater. 371:643–54. doi:10.1016/j.jhazmat.2019.03.041.
  • Said, K. O., M. Onifade, B. Genc, et al. (2021) ‘On the dependence of predictive models on experimental dataset: A spontaneous combustion studies scenario’, Int. J. Min. Reclam., 35(7), pp. 506–22. doi: 10.1080/17480930.2021.1884336.
  • Said, K. O., M. Onifade, A. I. Lawal, et al. (2021) ‘An Artificial Intelligence-based Model for the Prediction of Spontaneous Combustion Liability of Coal Based on Its Proximate Analysis’, Combust. Sci. Technol., 193(13), pp. 2350–67. doi: 10.1080/00102202.2020.1736577.
  • Shao, Z., et al. (2015) ‘Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China’, Nat. Hazards, 75(2), pp. 1833–52. doi: 10.1007/s11069-014-1401-3.
  • Shi, Q., et al. (2018) ‘Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal’, Combust. Sci. Technol., 190(12), pp. 2097–110. doi: 10.1080/00102202.2018.1491845.
  • Slovák, V., and B. Taraba 2012. Urea and CaCl 2 as inhibitors of coal low-temperature oxidation. J Therm Anal Calorim 110 (1):363–67. doi:10.1007/s10973-012-2482-4.
  • Tang, Y. 2016. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol. Energy and Fuels 30 (11):9303–09. doi:10.1021/acs.energyfuels.6b02040.
  • Wang, L. Y., et al. (2012) ‘Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal’, Saf Sci, 50(7), pp. 1528–34. doi: 10.1016/j.ssci.2012.03.006.
  • Wang, D., et al. (2014) ‘An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal’, Fuel, 117(PART A), pp. 218–23. doi: 10.1016/j.fuel.2013.09.070.
  • Wang, M., et al. (2014) ‘Preparation of Enteromorpha prolifera-based cetyl trimethyl ammonium bromide-doped activated carbon and its application for nickel(ii) removal’, Ecotoxicol. Environ. Saf., 104(1), pp. 254–62. doi: 10.1016/j.ecoenv.2014.01.038.
  • Wang, D. M., et al. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combustion and Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, G. Q., et al. (2021) ‘Numerical study on the evolution of methane explosion regions in the process of coal mine fire zone sealing’, Fuel, 289(November 2020), p. 119744. doi: 10.1016/j.fuel.2020.119744.
  • Wang, L., et al. (2021) ‘A novel biomass thermoresponsive konjac glucomannan composite gel developed to control the coal spontaneous combustion: Fire prevention and extinguishing properties’, Fuel, 306(174), p. 121757. doi: 10.1016/j.fuel.2021.121757.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy 2003. Pathways for production of CO2 and CO in low-temperature oxidation of coal. Energy and Fuels 17 (1):150–58. doi:10.1021/ef020095l.
  • Xi, Z., X. Guo, and J. Y. Richard Liew 2018. Investigation of thermoplastic powder synergizing polymorphic foam to inhibit coal oxidation at low temperature. Fuel 226 (April):490–97. doi:10.1016/j.fuel.2018.04.035.
  • Xue, D., et al. (2022) ‘Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal’, Fuel, 310(PB), p. 122160. doi: 10.1016/j.fuel.2021.122160.
  • Yang, Y., et al. 2018. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al–CO3 layered double hydroxides. Process Saf. Environ. Prot. 113:401–12. doi:10.1016/j.psep.2017.11.011.
  • Zhan, J., et al. (2011) ‘Role of an additive in retarding coal oxidation at moderate temperatures’, Proc. Combust. Inst., 33(2), pp. 2515–22. doi: 10.1016/j.proci.2010.06.046.
  • Zhang, Y., et al. (2018) ‘Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature’, Fuel, 233(June), pp. 68–76. doi: 10.1016/j.fuel.2018.06.052.
  • Zhao, Z., et al. 2021. Preparation and performance analysis of enteromorpha-based environmentally friendly dust suppressant. Powder Technol. 393:323–32. doi:10.1016/j.powtec.2021.07.071.
  • Zohuriaan-Mehr, M. J., et al. (2010) ‘Advances in non-hygienic applications of superabsorbent hydrogel materials’, J. Mater. Sci., 45(21), pp. 5711–35. doi: 10.1007/s10853-010-4780-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.