155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gas-Solid Flow and High-Efficiency and Low-NOx Combustion of a Novel Arch-Fired Boiler with Swirl Burners: Impact of Over-Fire Air

ORCID Icon, , &
Pages 1362-1380 | Received 09 Jul 2022, Accepted 16 Aug 2022, Published online: 22 Aug 2022

References

  • Chen, Y., H. Han, J. Lu, D. Li, J. Li, and S. Liu. 2013. Effects of alkali and alkaline earth metals on NOx reduction in coke combustion. Adv. Mat. Res 634:522–25. doi:10.4028/AMR.634-638.522.
  • Chen, K., J. Zhang, and D. Che. 2016. Effect of separated over-fire air on combustion performance of a 3MW pilot-scale facility. Appl. Therm. Eng. 108:30–40. doi:10.1016/j.applthermaleng.2016.07.077.
  • Chen, T., Y. Zhou, B. Wang, W. Deng, J. Song, W. Li, W. Yang, and L. Sun. 2020. Investigations on combustion optimization and NOx reduction of a 600-MWe down-fired boiler: Influence of rearrangement of tertiary air and jet angle of secondary air and separated over-fire air. J. Clean. Prod 277:124310. doi:10.1016/j.jclepro.2020.124310.
  • Eberle, J., J. Garcia-Mallol, and R. Simmerman. 2002. Advanced FW arch firing: NOx reduction in central power station. In Proceedings of the 19th Annual Pittsburgh Coal Conference. Pittsburgh, USA.
  • Fan, W., Y. Li, Z. Lin, and C. Zhang. 2010. PDA research on a novel pulverized coal combustion technology for a large utility boiler. Energy 35 (5):2141–48. doi:10.1016/j.energy.2010.01.033.
  • Fenimo, C. P. 1972. Formation of nitric oxide from fuel nitrogen in ethylene flames. Combust. Flame 19 (2):289–96. doi:10.1016/S0010-2180(72)80219-0.
  • Field, M. A. 1969. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200K and 2000K. Combust. Flame 13 (3):237–52. doi:10.1016/0010-2180(69)90002-9.
  • Garcia-Mallol, J., T. Steitz, C. Chu, and P. Jiang. 2005. Ultra-Low NOx advanced FW arch firing: Central power station applications. Proceedings of the 2nd U.S. China NOxand SO2Control Workshop. Dalian, China.
  • Jiang, Y., B. Lee, D. Oh, and C. Jeon. 2022. Influence of various air-staging on combustion and NOx emission characteristics in a tangentially fired boiler under the 50% load condition. Energy 244:123167. doi:10.1016/j.energy.2022.123167.
  • Karlström, O., A. Brink, E. Biagini, M. Hupa, and L. Tognotti. 2013. Comparing reaction orders of anthracite chars with bituminous coal chars at high temperature oxidation conditions. P. Combust. Inst 34 (2):2427–34. doi:10.1016/j.proci.2012.07.011.
  • Kobayashi, H., J. B. Howard, and A. F. Sarofim. 1977. Coal devolatilization at high temperatures. Symp. On Combus 16 (1):411–25. doi:10.1016/S0082-0784(77)80341-X.
  • Kuang, M., and Z. Li. 2014. Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers. Energy 69 (1):114–78. doi:10.1021/acs.est.5b02827.
  • Li, Z., S. Fan, G. Liu, X. Yang, Z. Chen, W. Su, and L. Wang. 2010a. Influence of staged-air on combustion characteristics and NO x emissions of a 300 MWe down-fired boiler with swirl burners †. Energy Fuels 24 (1):38–45. doi:10.1021/ef900476c.
  • Li, Z., F. Ren, Z. Chen, G. Liu, and Z. Xu. 2010b. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler. Environ. Sci. Technol. 44 (10):3926–31. doi:10.1021/es1002378.
  • Liu, G., Z. Chen, Z. Li, G. Li, and Q. Zong. 2015. Numerical simulations of flow, combustion characteristics, and NOx emission for down-fired boiler with different arch-supplied over-fire air ratios. Appl. Therm. Eng. 75:1034–45. doi:10.1080/10407782.2012.691062.
  • Ma, L., Q. Fang, D. Lv, C. Zhang, G. Chen, Y. Chen, and X. Duan. 2015a. Influence of separated overfire air ratio and location on combustion and NOx emission characteristics for a 600 MWe down-fired utility boiler with a novel combustion system. Energy Fuels 29 (11):7630–40. doi:10.1021/acs.energyfuels.5b01569.
  • Ma, L., Q. Fang, D. Lv, C. Zhang, X. Chen, G. Duan, X. Wang, and X. Wang 2015b. Reducing NO x emissions for a 600 MW e down-fired pulverized-coal utility boiler by applying a novel combustion system. Environ. Sci. Technol. 49 (21):13040–49. doi:10.1021/acs.est.5b02827.
  • Ma, L., Q. Fang, C. Yin, H. Wang, C. Zhang, and G. Chen. 2019. A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions. Appl. Energy 238:453–65. doi:10.1016/j.apenergy.2019.01.084.
  • Ni, P., and X. Wang. 2012. Modeling the formation of noand soot emissions in a diesel engine at different humidity. Int. J. Green Energy 9 (5–8):815–28. doi:10.1080/15435075.2011.641701.
  • Ouyang, Z., J. Zhu, and Q. Lu. 2013. Experimental study on preheating and combustion characteristics of pulverized anthracite coal. Fuel 113:122–27. doi:10.1016/j.fuel.2013.05.063.
  • Ren, F., Z. Li, Z. Chen, S. Fan, and G. Liu 2010. Influence of the overfire air ratio on the NO x emission and combustion characteristics of a down-fired 300-MW e utility boiler. Environ. Sci. Technol. 44 (16):6510–16. doi:10.1021/es100956d.
  • Song, M., L. Zeng, Z. Chen, Z. Li, Q. Zhu, and M. Kuang. 2016. Industrial application of an improved multiple injection and multiple staging combustion technology in a 600 MWe supercritical down-fired boiler. Environ. Sci. Technol. 50 (3):1604–10. doi:10.1021/acs.est.5b03976.
  • Wang, Q., Z. Chen, M. Che, L. Zeng, Z. Li, and M. Song. 2016. Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air. Appl. Energy 182:29–38. doi:10.1016/j.apenergy.2016.08.127.
  • Wang, Q., Z. Chen, Q. Chen, L. Zeng, and Z. Li. 2019. Experimental investigation of gas/particle two-phase flow characteristics in a down-fired boiler by PDA measurements. Exp. Therm. Fluid Sci 107:38–53. doi:10.1016/j.expthermflusci.2019.05.014.
  • Wang, Q., Z. Chen, S. Guan, L. Zeng, and Z. Li. 2020. Experimental investigation on gas/solid two-phase flow characteristics in primary combustion zone for an improved down-fired boiler: Influence of overfire air ratio. J. Eng. Thermophys 41:20–28.
  • Wang, Q., Z. Chen, L. Wang, L. Zeng, and Z. Li. 2018. Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners. Appl. Energy 223:358–68. doi:10.1016/j.apenergy.2018.04.064.
  • Wang, Q., B. Li, Y. Tu, and Z. Li. 2022. Experimental and numerical simulation research on flow, combustion and NO x formation of a new swirling arch-fired boiler. Combust. Sci. Technol 1–20. doi:10.1080/00102202.2022.2104612.
  • Wei, X., T. Xu, and S. Hui. 2004. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners. Energ. Convers. Manage 45 (5):725–35. doi:10.1016/S0196-8904(03)00183-3.
  • Yang, W., B. Wang, S. Lei, K. Wang, T. Chen, Z. Song, C. Ma, Y. Zhou, and L. Sun. 2019. Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air. J. Clean. Pr 210:1120–30. doi:10.1016/j.jclepro.2018.11.077.
  • Yang, W., Z. Zhou, W. Yang, J. Zhou, Z. Wang, J. Liu, and K. Cen. 2014. Combustion and NOx emission characteristics of a down-fired furnace with the hot air packing combustion technology. Energy Fuels 28 (1):439–46. doi:10.1021/ef4018652.
  • Yin, C. 2015. On gas and particle radiation in pulverized fuel combustion furnaces. Appl. Energy 157:554–61. doi:10.1016/j.apenergy.2015.01.142.
  • Zeng, L., Z. Li, G. Zhao, H. Zhou, and F. Zhang. 2011. The influence of different premixing section length on gas/particle flow characteristics of swirl burner. J. Eng. Thermophys 32:1953–56.
  • Zeng, L., M. Song, X. Li, Y. Liu, Z. Li, and Z. Chen. 2017. Factors affecting the downward flame depth in a 600MW down-fired boiler incorporating multiple-injection and multiple-staging technology. Energy 118:333–44. doi:10.1016/j.energy.2016.12.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.