85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixing Enhancement of Inverse Jet Flame with Circumferential Fuel Ports

ORCID Icon & ORCID Icon
Pages 1410-1431 | Received 09 Jul 2022, Accepted 18 Aug 2022, Published online: 31 Aug 2022

References

  • Barakat, H., M. Kamal, H. Saad, and W. Eldeeb. 2015. Performance enhancement of inverse diffusion flame burners with distributed ports. 229, 160–75.
  • Charkrit, S., and C. Liu. 2019. Vortex core and POD analysis on hairpin vortex formation in flow transition. doi:10.48550/arXiv.1912.01975 .
  • Charkrit, S., P. Shrestha, and C. Liu. 2020. Liutex core line and POD analysis on hairpin vortex formation in natural flow transition. J. Hydrodyn 32 (6):1109–21. doi:10.1007/s42241-020-0079-0.
  • Choy, Y. S., H. Zhen, C. W. Leung, and H. Li. 2012. Pollutant emission and noise radiation from open and impinging inverse diffusion flames. Appl. Energy 91 (1):82–89. doi:10.1016/j.apenergy.2011.09.013.
  • Claramunt, K., R. Consul, D. Carbonell, and C. Pérez-Segarra. 2006. Analysis of the laminar flamelet concept for nonpremixed laminar flames. Combust. Flame 145 (4):845–62. doi:10.1016/j.combustflame.2005.11.005.
  • Costa, M., C. Parente, and A. Santos. 2004. Nitrogen oxides emissions from buoyancy and momentum controlled turbulent methane jet diffusion flames. Exp. Therm. Fluid. Sci 28 (7):729–34. doi:10.1016/j.expthermflusci.2003.12.010.
  • Dong, L., C. S. Cheung, and C. W. Leung. 2011. Combustion optimization of a port-array inverse diffusion flame jet. Energy 36 (5):2834–46. doi:10.1016/j.energy.2011.02.025.
  • Elbaz, A. M., and W. L. Roberts. 2014. Flame structure of methane inverse diffusion flame. Exp. Therm. Fluid. Sci 56:23–32. doi:10.1016/j.expthermflusci.2013.11.011.
  • Gollahalli, S., T. Khanna, and N. Prabhu. 1992. Diffusion flames of gas jets issued from circular and elliptic nozzles. Combust. Sci. Technol 86 (1–6):267–88. doi:10.1080/00102209208947199.
  • Gutmark, E. J., and F. F. Grinstein. 1999. Flow control with noncircular jets. Annu. Rev. Fluid. Mech 31 (1):239–72. doi:10.1146/annurev.fluid.31.1.239.
  • Hariharan, V., and D. P. Mishra. 2019. Static flame stability of circumferentially arranged fuel port inverse jet non-premixed flame burner. Combust. Sci. Technol 192 (8): 1493–1519. doi:10.1080/00102202.2019.1611567.
  • Hariharan, V., and D. P. Mishra. 2020a. Entrainment studies in inverse jet flame port burner. Combust. Flame 216:338–53. doi:10.1016/j.combustflame.2020.02.023.
  • Hariharan, V., and D. P. Mishra. 2020b. Experimental characterization of circumferentially arranged fuel port inverse jet diffusion flame burner. Combust. Sci. Technol 192 (12):2306–25. doi:10.1080/00102202.2019.1643847.
  • Hariharan, V., and D. P. Mishra. 2021. Characterization of a novel elliptical air-port inverse jet flame. Combust. Sci. Technol 1–19. doi:10.1080/00102202.2021.1886092.
  • Kamal, M. 2008. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor. Combust. Sci. Technol 181 (1):136–58. doi:10.1080/00102200802483597.
  • Kaplan, C., and K. Kailasanath. 2001. Flow-Field effects on soot formation in normal and inverse methane–air diffusion flames. Combust. Flame 124 (1–2):275–94. doi:10.1016/S0010-2180(00)00196-6.
  • Kapusta, Ł. J., C. Shuang, M. Aldén, and Z. Li. 2020. Structures of inverse jet flames stabilized on a coaxial burner. Energy 193:116757. doi:10.1016/j.energy.2019.116757.
  • Katta, V. R., L. G. Blevins, and W. M. Roquemore. 2005. Dynamics of an inverse diffusion flame and its role in polycyclic-aromatic-hydrocarbon and soot formation. Combust. Flame 142 (1–2):33–51. doi:10.1016/j.combustflame.2005.02.006.
  • Kim, J., and F. Williams. 1997. Extinction of diffusion flames with nonunity lewis numbers. J. Eng. Math. 31 (2/3):101–18. doi:10.1023/A:1004282110474.
  • Lee, S., and P. Harsha. 1970. Use of turbulent kinetic energy in free mixing studies. AIAA J. 8 (6):1026–32. doi:10.2514/3.5826.
  • Liu, C., Y.-S. Gao, X.-R. Dong, Y.-Q. Wang, J.-M. Liu, Y.-N. Zhang, X.-S. CaI, and N. Gui. 2019. Third generation of vortex identification methods: omega and liutex/rortex based systems. J. Hydrodyn 31 (2):205–23. doi:10.1007/s42241-019-0022-4.
  • Liu, C., Y. Wang, Y. Yang, and Z. Duan. 2016. New omega vortex identification method. Sci. China Phys. Mech. Astron 59 (8):1–9. doi:10.1007/s11433-016-0022-6.
  • Mahesh, S., and D. Mishra. 2010. Flame structure of LPG-air inverse diffusion flame in a backstep burner. Fuel 89 (8):2145–48. doi:10.1016/j.fuel.2010.01.030.
  • Mahesh, S., and D. Mishra. 2011. Study of the turbulent inverse diffusion flame in recessed backstep and coaxial burners. Combust. Explos. Shock. Waves 47 (3):274–79. doi:10.1134/S0010508211030038.
  • Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern 9 (1):62–66. doi:10.1109/TSMC.1979.4310076.
  • Partridge, W. P.,sJr, and N. M. Laurendeau. 1995. Nitric oxide formation by inverse diffusion flames in staged-air burners. Fuel 74 (10):1424–30. doi:10.1016/0016-2361(95)00121-K.
  • Peters, N. 2000. Turbulent combustion. Cambridge: Cambridge university press.
  • Pitsch, H., and N. Peters. 1998. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114 (1–2):26–40. doi:10.1016/S0010-2180(97)00278-2.
  • Rasheed, I., and D. P. Mishra. 2020. Numerical study of a sonic jet in a supersonic crossflow over a flat plate. Phys. Fluids 32 (12):126113. doi:10.1063/5.0026214.
  • Schadow, K., E. Gutmark, S. Koshigoe, and K. Wilson. 1989. Combustion-Related shear-flow dynamics in elliptic supersonic jets. AIAA J. 27 (10):1347–53. doi:10.2514/3.10270.
  • Shu, Z., S. K. Aggarwal, V. R. Katta, and I. K. Puri. 1997. Flame-Vortex dynamics in an inverse partially premixed combustor: the froude number effects. Combust. Flame 111 (4):276–95. doi:10.1016/S0010-2180(97)00018-7.
  • Zhang, T., Q. Guo, X. Song, Z. Zhou, and G. Yu. 2013. The chemiluminescence and structure properties of normal/inverse diffusion flames. J. Spectrosc 2013:1–7. doi:10.1155/2013/304717.
  • Zhen, H., C. S. Cheung, C. W. Leung, and H. Li. 2013. Thermal and heat transfer behaviors of an inverse diffusion flame with induced swirl. Fuel 103:212–19. doi:10.1016/j.fuel.2012.05.026.
  • Zhen, H., Y. S. Choy, C. W. Leung, and C. S. Cheung. 2011a. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl. Energy 88 (9):2917–24. doi:10.1016/j.apenergy.2011.02.040.
  • Zhen, H., C. W. Leung, and C. S. Cheung. 2011b. Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation. Appl. Energy 88 (9):2925–33. doi:10.1016/j.apenergy.2011.02.041.
  • Zhen, H., C. W. Leung, and C. S. Cheung. 2011c. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames. Energy Convers. Manage. 52 (2):1263–71. doi:10.1016/j.enconman.2010.09.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.