175
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Wave Structure of Heterogeneous Detonations at High Operating Pressures

ORCID Icon &
Pages 1432-1457 | Received 05 Apr 2022, Accepted 19 Aug 2022, Published online: 31 Aug 2022

References

  • Bar-Or, R., M. Sichel, and J. A. Nicholls. 1981. The propagation of cylindrical detonations in monodisperse sprays. Symp. (Int.) Combust. 18 (1):1599–606. Accessed 12 August 2021. https://www.sciencedirect.com/science/article/pii/S0082078481801634
  • Bar-Or, R., M. Sichel, and J. A. Nicholls. 1982. The reaction zone structure of cylindrical detonations in monodisperse sprays. Symp. (Int.) Combust. 19 (1):665–73. Accessed 12 August 2021. https://www.sciencedirect.com/science/article/pii/S0082078482802415
  • Boiko, V. M., A. N. Papyrin, and S. V. Poplavskii. 1987. Dynamics of droplet breakup in shock waves. J. Appl. Mech. Tech. Phys. 28 (2):263–69. Accessed 20 October 2020. http://link.springer.com/10.1007/BF00918731
  • Borisov, A. A., B. E. Gel’Fand, S. A. Gubin, S. M. Kogarko, and A. L. Podgrebenkov. 1970. Detonation reaction zone in two-phase mixtures. Combust. Explos. Shock Waves 6 (3): 327–36. Accessed 19 October 2020. http://link.springer.com/10.1007/BF00742508
  • Borisov, A. A., S. M. Kogarko, and A. V. Lyubimov. 1967. Sliding of detonation and shock waves over liquid surfaces. Combust. Explosion Shock Waves 1 (4):19–23. Accessed 20 October 2020. http://link.springer.com/10.1007/BF00748807
  • Bowen, J. R., K. W. Ragland, F. J. Steffes, and T. G. Loflin. 1971. Heterogeneous detonation supported by fuel fogs or films. Symp. (Int.) Combust. 13 (1):1131–39. Accessed 25 March 2021. https://www.sciencedirect.com/science/article/pii/S0082078471801108
  • Browne, S., J. Ziegler, and J. E. Shepherd. 2008. Numerical solution methods for shock and detonation jump conditions. GALCIT Report FM2006.006.
  • Burke, M., M. Chaos, Y. Ju, F. Dryer, and S. Klippenstein. 2011. Comprehensive h2/o2 kinetic model for high-pressure combustion. Int. J. Chem. Kinetics 44(7), 444–74
  • Cheatham, S., and K. Kailasanath. 2005. Numerical modelling of liquid-fuelled detonations in tubes. Combust. Theory Modell. 9 (1):23–48. doi:10.1080/13647830500051786
  • Cramer, F. B. 1963. The onset of detonation in a droplet combustion field. In Symposium (international) on combustion, Ithaca, New York (Vol. 9, pp. 482–87).
  • Dabora, E., K. Ragland, and J. Nicholls. 1969, January. Drop-Size effects in spray detonations. Symp. (Int.) Combust. 12 (1):19–26. Accessed 20 October 2020. https://linkinghub.elsevier.com/retrieve/pii/S0082078469803887
  • Eidelman, S., and A. Burcat. 1980. Evolution of a detonation wave in a cloud of fuel droplets: Part I. Influence of igniting explosion. AIAA J. 18 (9):1103–09. doi:10.2514/3.7711
  • Engel, O. 1958. Fragmentation of waterdrops in the zone behind an air shock. J. Res. Natl. Bur. Stand. (1934) 60 (3):245. Accessed 19 January 2021. https://nvlpubs.nist.gov/nistpubs/jres/60/jresv60n3p245A1b.pdf
  • Fickett, W., and W. C. Davis. 1979. Detonation theory and experiment. Mineola, New York: Dover Publications Inc.
  • Girin, A. G. 1985. Hydrodynamic instability and regimes of fragmentation of drops. J. Eng. Phys. 48 (5):560–64. ( Accessed 21 November 2021. https://doi.org/10.1007/BF01840722
  • Girin, A. G. 2011, March. Equations of the kinetics of droplet fragmentation in a high-speed gas flow. J. Eng. Phys. Thermophys. 84 (2):262–69. Accessed 20 November 2021. http://link.springer.com/10.1007/s10891-011-0468-x
  • Gubin, S., and M. Sichel. 1977. Calculation of the detonation velocity of a mixture of liquid fuel droplets and a gaseous oxidizer. Combust. Sci. Technol. 17 (3–4):109–17. doi:10.1080/00102207708946821.
  • Humble, J., and S. D. Heister. 2021. Heterogeneous Detonation Physics as Applied to High Pressure Rotating Detonation Engines. In AIAA Scitech, Virtual Event (p. 1027).
  • Kauffman, C. W., and J. A. Nicholls. 1971, May. Shock-wave ignition of liquid fuel drops. AIAA J. 9 (5):880–85. Accessed 20 October 2020. https://arc.aiaa.org/doi/10.2514/3.6290
  • Lee, J. H. 2008. The detonation phenomenon. New York, NY: Cambridge University Press.
  • Lemmon, E. W., M. O. McLinden, and D. G. Friend. 2016. . In Nist chemistry webbook, nist standard reference database, ed. and . Gaithersburg, MD: National Institute of Standards and Technology.
  • Lim, D., J. Humble, and S. Heister. 2020. Experimental Testing of an RP-2-GOX Rotating Detonation Rocket Engine. In AIAA Scitech, Orlando, FL.
  • Martinez, A. G., Heister, S. D. 2021. Wave Structure of Heterogeneous Detonations in Rotating Detonation Rocket Engines. In AIAA Scitech, San Diego, CA.
  • Nicholls, J., and A. Ranger. 1969. Aerodynamic shattering of liquid drops. AIAA J. 7 (2):285–90. doi:10.2514/3.5087.
  • Nicholson, J. E., and J. A. Hill. 1965. Rain Erosion on Spike-Protected Supersonic Radomes, Interim engineering rept. Defense Technical Information Center.
  • Pierce, T., and J. Nicholls. 1973. Time variation in the reaction-zone structure of two-phase spray detonations. In Symposium (international) on combustion, University Park, PA (Vol. 14, pp. 1277–84).
  • Ragland, K. W. 1968. Observed structure of spray detonations. Phys. Fluids 11 (11):2377. Accessed 20 October 2020. https://aip.scitation.org/doi/10.1063/1.1691827
  • Ragland, K., E. Dabora, and J. Nicholls. 1966, January. ”A study of heterogeneous detonations”. In 3rd and 4th aerospace sciences meeting. New York, NY: American Institute of Aeronautics and Astronautics. Accessed 20 October 2020. http://arc.aiaa.org/doi/10.2514/6.1966-109
  • Reinecke, W. G., and W. L. Mcay. 1969. Experiments on water drop breakup behind mach 3 to mach 12 shocks. Wilmington, MA: Avco Corp.
  • Reinecke W.G., and Waldman G.D. 1970. Astudy of drop breakup behind strong shocks with applications to flight, Tech. Rep. Wilmington, MA: Avco Systems Division.
  • Schmitt, R. G., and P. B. Butler. 1995, January. Detonation Properties of gases at elevated initial pressures. Combust. Sci. Technol. 106 (1–3):167–91. Accessed 14 June 2022. http://www.tandfonline.com/doi/abs/10.1080/00102209508907773
  • Smith, G. P., Y. Tao, and H. Wang. 2016. Foundational fuel chemistry model version 1.0 (ffcm1). http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html
  • Watanabe, H., A. Matsuo, A. Chinnayya, K. Matsuoka, A. Kawasaki, and J. Kasahara. 2020. Numerical analysis of the mean structure of gaseous detonation with dilute water spray. J. Fluid Mech. 887. doi: 10.1017/jfm.2019.1018.
  • Xu, R., K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang , et al. 2018. A Physics-based Approach to Modeling Real-Fuel Combustion Chemistry - ii. Reaction Kinetic Models of Jet and Rocket Fuels. Combustion and Flame (Vol. 193).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.