46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Model order reduction based on Laguerre orthogonal polynomials for parabolic equation constrained optimal control problems

, , &
Pages 237-254 | Received 08 Aug 2023, Accepted 06 Feb 2024, Published online: 06 Mar 2024

References

  • A. Alla, C. Grassle, and M. Hinze, A residual based snapshot location strategy for POD in distributed optimal control of linear parabolic equations, IFAC-PapersOnLine 49 (2016), pp. 13–18. https://doi.org/10.1016/j.ifacol.2016.07.411.
  • A. Alla, C. Graessle, and M. Hinze, A-posteriori snapshot location for POD in optimal control of linear parabolic equations, ESAIM Math. Model. Numer. Anal. 52 (2018), pp. 1847–1873. http://doi.org/10.1051/m2an/20180.
  • A.C. Antoulas, Approximation of Large-scale Dynamical Systems, SIAM, Philadelphia, 2005.
  • D. Binion and X.L. Chen, A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction, Finite Elem. Anal. Des. 47 (2011), pp. 728–738. https://doi.org/10.1016/j.finel.2011.02.004.
  • Y. Chen, V. Balakrishnan, and C.K. Koh, et al. Model reduction in the time-domain using Laguerre polynomials and krylov methods, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition. Vol. 10, 2002, pp. 931–935.
  • K.B. Datta and B.M. Mohan, Orthogonal Functions in Systems and Control, World Scientific, Singapore, 1995.
  • L. Dede and A. Quarteroni, Optimal control and numerical adaptivity for advection-diffusion equations, ESAIM: Math. Model. Numer. Anal. 39 (2005), pp. 1019–1040. http://doi.org/10.1051/m2an:2005044.
  • K. Eppler and F. Trltzsch, Online Optimization of Large Scale Systems, Springer, Berlin, Heidelberg, 2001.
  • K. Glashoff and N. Weck, Boundary control of parabolic differential equations in arbitrary dimensions: Supremum norm problems, SIAM J. Control Optim. 14 (1976), pp. 662–681. https://doi.org/10.1137/0314043.
  • M. Grepl and B.M. Krcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems, C. R. Math. 349 (2011), pp. 873–877. http://doi.org/10.1016/j.crma.2011.07.010.
  • M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, Soc. Indu. Appl. Math. 15 (2017), pp. 3–63. https://doi.org/10.1137/1.9781611974829.ch1.
  • Y.L. Jiang, Model Order Reduction Methods, Science Press, Beijing, 2010.
  • Y.L. Jiang and H.B. Chen, Application of general orthogonal polynomials to fast simulation of nonlinear descriptor systems through piecewise-linear approximation, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31 (2012), pp. 804–808. http://doi.org/10.1109/TCAD.2011.2179879.
  • Y.L. Jiang and H.B. Chen, Time domain model order reduction of general orthogonal polynomials for linear input-output systems, IEEE. Trans. Automat. Contr. 57 (2012), pp. 330–343. https://doi.org/10.1109/TAC.2011.2161839.
  • Y.L. Jiang and X.L. Wang, Model order reduction methods for coupled systems in the time domain using Laguerre polynomials, Comput Math. Appl. 62 (2011), pp. 1923–1939. https://doi.org/10.1016/j.camwa.2011.08.039.
  • K. Kunisch and S.  Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM Math. Model. Numer. Anal. 42 (2008), pp. 1–23. https://doi.org/10.1051/m2an:2007054.
  • W. Li, Z. Miao, and Y.L. Jiang, Two-sided krylov enhanced proper orthogonal decomposition methods for partial differential equations with variable coefficients, Numer. Methods. Partial. Differ. Equ. 40 (2024), pp. 1–22. https://doi.org/10.1002/num.23058.
  • D. Luca, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM. J. Sci. Comput. 32 (2010), pp. 997–1019. https://doi.org/10.1137/090760453.
  • Z.D. Luo and G. Chen, Proper Orthogonal Decomposition Methods for Partial Differential Equations, Academic Press, America, 2018.
  • Z.Z. Qi, Y.L. Jiang, and Z.H. Xiao, Model order reduction based on general orthogonal polynomials in the time domain for coupled systems, J. Franklin Inst. Eng. Appl. Math. 351 (2014), pp. 3200–3214. https://doi.org/10.1016/j.jfranklin.2014.02.014.
  • Z.Z. Qi, Y.L. Jiang, and Z.H. Xiao, Time domain model order reduction using general orthogonal polynomials for K-power bilinear systems, Int. J. Control. 89 (2016), pp. 1065–1078. https://doi.org/10.1080/00207179.2015.1117659.
  • D.E. Edmunds, Optimal control of systems governed by partial differential equations, Wiley.4 (1972), pp. 236–237. https://doi.org/10.1112/blms/4.2.236.
  • E.W. Sachs and S. Volkwein, POD-Galerkin approximations in PDE-constrained optimization, GAMM-Mitteilungen 33 (2010), pp. 194–208. https://doi.org/10.1002/gamm.201010015.
  • F. Samadi, A. Heydari, and S. Effati, A numerical method based on a bilinear pseudo-spectral method to solve the convection-diffusion optimal control problems, Int. J. Comput. Math. 98 (2020), pp. 28–46. https://doi.org/10.1080/00207160.2020.1723563.
  • A. Steinboeck, K. Graichen, and A. Kugi, Dynamic optimization of a slab reheating furnace with consistent approximation of control variables, IEEE. Trans. Control. Syst. Technol. 19 (2011), pp. 1444–1456. http://doi.org/10.1109/TCST.2010.2087379.
  • G. Szego, Orthogonal Polynomials, 4th ed., American Mathematical Society, New York, 1975.
  • Z.Z. Tao, B. Sun, and H.F. Niu, Galerkin spectral approximation for optimal control problem of a fourth-order equation with L2-norm control constraint, Int. J. Comput. Math. 99 (2022), pp. 1344–1366. https://doi.org/10.1080/00207160.2021.1971204.
  • F. Troltzsch and J. Sprekels, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, Providence, RI, 2010.
  • G. Vossen and S. Volkwein, Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems, Numer. Algebra Control Optim. 2 (2012), pp. 465–485. http://doi.org/10.3934/naco.2012.2.465.
  • S. Vrudhula, J.M. Wang, and P. Ghanta, Hermite polynomial based interconnect analysis in the presence of process variations, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 (2015), pp. 2001–2011. http://doi.org/10.1109/TCAD.2005.862734.
  • X.L. Wang, Y.L. Jiang, and K. Xu, Laguerre functions approximation for model reduction of second order time-delay systems, J. Franklin. Inst. 353 (2016), pp. 3560–3577. https://doi.org/10.1016/j.jfranklin.2016.06.024.
  • Z.H. Xiao and Y.L. Jiang, Model order reduction of MIMO bilinear systems by multi-order Arnoldi method, Syst. Control Lett. 94 (2016), pp. 1–10. https://doi.org/10.1016/j.sysconle.2016.04.005.
  • C. Xu, Y. Ou, and E. Schuster, Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction, Automatica 47 (2011), pp. 418–426. http://doi.org/10.1016/j.automatica.2010.11.001.
  • Q. Yu, J.M. Wang, and E.S. Kuh, Passive model order reduction algorithm based on Chebyshev expansion of impulse response of interconnect networks.Proceedings of the 37th Annual Design Automation Conference.2000.
  • J.W. Yuan and Y.L. Jiang, A parameterised model order reduction method for parametric systems based on Laguerre polynomials, Int. J. Control. 91 (2018), pp. 1861–1872. https://doi.org/10.1080/00207179.2017.1333156.
  • J.W. Yuan, Y.L. Jiang, and Z.H. Xiao, Structure-preserving model order reduction by general orthogonal polynomials for integral-differential systems, J. Franklin. Inst. 352 (2015), pp. 138–154. https://doi.org/10.1016/j.jfranklin.2014.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.