77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robust convergence result of discontinuous Galerkin stabilization method for two-dimensional reaction–diffusion equation with discontinuous source term

&
Pages 255-280 | Received 07 Oct 2023, Accepted 29 Jan 2024, Published online: 13 Mar 2024

References

  • K. Aarthika, R. Shiromani, and V. Shanthi, A higher-order finite difference method for two-dimensional singularly perturbed reaction–diffusion with source-term-discontinuous problem, Comput. Math. Appl. 118 (2022), pp. 56–73.
  • I.T. Angelova and L.G. Vulkov, High-order finite difference schemes for elliptic problems with intersecting interfaces, Appl. Math. Comput. 187(2) (2007), pp. 824–843.
  • D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39(5) (2002), pp. 1749–1779.
  • G. Babu, M. Prithvi, K.K. Sharma, and V.P. Ramesh, A robust numerical algorithm on harmonic mesh for parabolic singularly perturbed convection-diffusion problems with time delay, Numer. Algorithms. 91(2) (2022), pp. 615–634.
  • I.A. Brayanov, Numerical solution of a two-dimensional singularly perturbed reaction–diffusion problem with discontinuous coefficients, Appl. Math. Comput. 182(1) (2006), pp. 631–643.
  • I. Braianov and L. Vulkov, Numerical solution of a reaction–diffusion elliptic interface problem with strong anisotropy, Computing 71(2) (2003), pp. 153–173.
  • Y. Cheng, L. Yan, and Y. Mei, Balanced-norm error estimate of the local discontinuous Galerkin method on layer-adapted meshes for reaction–diffusion problems, Numer. Algorithms. 91(4) (2022), pp. 1597–1626.
  • M. Dobrowolski and H.G. Roos, A priori estimates for the solution of convection–diffusion problems and interpolation on Shishkin meshes, Z. Für Anal. Ihre Anwend. 16(4) (1997), pp. 1001–1012.
  • P. Farrell, A. Hegarty, J.M. Miller, E. O'Riordan, and G.I. Shishkin, Robust Computational Techniques for Boundary Layers, New York: CRC Press, 2000.
  • H. Han and R.B. Kellogg, Differentiability properties of solutions of the equation −ε2Δu+ru=f(x,y) in a square, SIAM J. Math. Anal. 21(2) (1990), pp. 394–408.
  • P. Houston, C. Schwab, and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems, SIAM. J. Numer. Anal. 37(5) (2000), pp. 1618–1643.
  • P. Houston, C. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection–diffusion–reaction problems, SIAM J. Numer. Anal. 39(6) (2002), pp. 2133–2163.
  • T. Linß, Layer-adapted meshes for convection–diffusion problems, Comput. Methods. Appl. Mech. Eng. 192(9-10) (2003), pp. 1061–1105.
  • T. Linß and M. Stynes, Asymptotic analysis and Shishkin-type decomposition for an elliptic convection–diffusion problem, J. Math. Anal. Appl. 261(2) (2001), pp. 604–632.
  • F. Liu, N. Madden, M. Stynes, and A. Zhou, A two-scale sparse grid method for a singularly perturbed reaction–diffusion problem in two dimensions, IMA J. Numer. Anal. 29(4) (2009), pp. 986–1007.
  • J.J.H. Miller, E. O'Riordan, G.I. Shishkin, and R.B. Kellogg, Fitted numerical methods for singular perturbation problems, SIAM Rev. 39(3) (1997), pp. 535–537.
  • K.W. Morton, Numerical Solution of Convection–Diffusion Problems, London: CRC Press, 2019.
  • Z.H. Qiu, L.C. Wrobel, and H. Power, Numerical solution of convection–diffusion problems at high Pećlet number using boundary elements, Int. J. Numer. Methods. Eng. 41(5) (1998), pp. 899–914.
  • K.R. Ranjan and S. Gowrisankar, Uniformly convergent NIPG method for singularly perturbed convection diffusion problem on Shishkin type meshes, Appl. Numer. Math. 179(4) (2022), pp. 125–148.
  • K.R. Ranjan and S. Gowrisankar, NIPG method on Shishkin mesh for singularly perturbed convection–diffusion problem with discontinuous source term, Int. J. Comput. Methods 20(02) (2023), pp. 2250048.
  • H.G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems, Vol. 24, Berlin: Springer Science & Business Media, 2008.
  • H.G. Roos and H. Zarin, The discontinuous Galerkin finite element method for singularly perturbed problems. in Challenges in Scientific Computing-CISC 2002, Springer, 2003, pp. 246–267.
  • H.G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection–diffusion problems on Shishkin meshes, Numer. Methods Partial Differ. Equ.: An Int. J. 23(6) (2007), pp. 1560–1576.
  • G. Singh and S. Natesan, Superconvergence error estimates of discontinuous Galerkin time stepping for singularly perturbed parabolic problems, Numer. Algorithms. 90(3) (2022), pp. 1073–1090.
  • M. Stynes and E. O'Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection–diffusion problem, J. Math. Anal. Appl. 214(1) (1997), pp. 36–54.
  • M. Stynes and L. Tobiska, Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection–diffusion problem with exponential layers, JNMA 9(1) (2001), pp. 59–76.
  • M. Stynes and L. Tobiska, The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy, SIAM. J. Numer. Anal. 41(5) (2003), pp. 1620–1642.
  • G. Sun and M. Stynes, Finite element methods on piecewise equidistant meshes for interior turning point problems, Numer. Algorithms. 8(1) (1994), pp. 111–129.
  • Z. Wang and M. Li, Superconvergence analysis of anisotropic finite element method for the time fractional substantial diffusion equation with smooth and nonsmooth solutions, Math. Methods. Appl. Sci. 46(5) (2023), pp. 5545–5560.
  • H. Zarin and H.G. Roos, Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers, Numer. Math. 100(4) (2005), pp. 735–759.
  • J. Zhang and X. Liu, Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes, Numer. Algorithms 92(3) (2023), pp. 1553–1570.
  • J. Zhang and L. Mei, Pointwise error estimates of the bilinear SDFEM on Shishkin meshes, Numer. Methods Partial. Differ. Equ. 29(2) (2013), pp. 422–440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.