66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise

, &
Pages 357-371 | Received 25 May 2023, Accepted 25 Feb 2024, Published online: 11 Mar 2024

References

  • P. Abry and D. Veitch, Wavelet analysis of long-range-dependent traffic, IEEE Trans. Inform. Theory44 (1998), pp. 2–15. https://doi.org/10.1109/18.650984.
  • A.A. Arara, K. Debrabant, and A. Kværnø, Stochastic B-series and order conditions for exponential integrators, in Numerical Mathematics and Advanced Applications, F. Radu, K. Kumar, I. Berre, J. Nordbotten, and I. Pop, eds., Lecture Notes in Computational Science and Engineering, Springer, University of Bergen, Voss, Norway, 2019, pp. 419–427.
  • E. Buckwar, M.G. Riedler, and P.E. Kloeden, The numerical stability of stochastic ordinary differential equations with additive noise, Stoch. Dyn. 11 (2011), pp. 265–281. http://doi.org/10.1142/S0219493711003279.
  • T. Caraballo and P.E. Kloeden, The pathwise numerical approximation of stationary solutions of semilinear stochastic evolution equations, Appl. Math. Optim. 54 (2006), pp. 401–415. https://doi.org/10.1007/s00245-006-0876-z.
  • F. Carbonell and J.C. Jimenez, Weak local linear discretizations for stochastic differential equations with jumps, J. Appl. Probab. 45 (2008), pp. 201–210. https://doi.org/10.1239/jap/1208358962.
  • P. Cheridito, H. Kawaguchi, and M. Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), pp. 1–14. https://doi.org/10.1214/EJP.v8-125.
  • S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), pp. 430–455. http://doi.org/10.1006/jcph.2002.6995.
  • K. Debrabant, A. Kværnø, and N.C. Mattsson, Runge–Kutta Lawson schemes for stochastic differential equations, BIT 61 (2021), pp. 381–409. Available at https://rdcu.be/chmKb.
  • K. Debrabant, A. Kværnø, and N.C. Mattsson, Lawson schemes for highly oscillatory stochastic differential equations and conservation of invariants, BIT 62 (2022), pp. 1121–1147. https://doi.org/10.1007/s10543-021-00906-8.
  • K. Dekker and J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs Vol. 2, North-Holland, Amsterdam, 1984.
  • T.E. Duncan, Y. Hu, and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I. Theory, SIAM J. Control Optim. 38 (2000), pp. 582–612. https://doi.org/10.1137/S036301299834171X.
  • T.E. Duncan, B. Pasik-Duncan, and B. Maslowski, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dyn. 2 (2002), pp. 225–250. https://doi.org/10.1142/S0219493702000340.
  • U. Erdoğan and G.J. Lord, A new class of exponential integrators for SDEs with multiplicative noise, IMA J. Numer. Anal. 39 (2019), pp. 820–846. https://doi.org/10.1093/imanum/dry008.
  • M.J. Garrido-Atienza, P.E. Kloeden, and A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion, Appl. Math. Optim. 60 (2009), pp. 151–172. https://doi.org/10.1007/s00245-008-9062-9.
  • M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer. 19 (2010), pp. 209–286. http://doi.org/10.1017/S0962492910000048.
  • J. Hong, C. Huang, M. Kamrani, and X. Wang, Optimal strong convergence rate of a backward Euler type scheme for the Cox-Ingersoll-Ross model driven by fractional Brownian motion, Stochastic Process. Appl. 130 (2020), pp. 2675–2692. https://doi.org/10.1016/j.spa.2019.07.014.
  • A. Jentzen and P.E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), pp. 649–667. https://doi.org/10.1098/rspa.2008.0325.
  • J.C. Jimenez, I. Shoji, and T. Ozaki, Simulation of stochastic differential equations through the local linearization method. A comparative study, J. Statist. Phys. 94 (1999), pp. 587–602. https://doi.org/10.1023/A:1004504506041.
  • M. Kamrani, Numerical solution of stochastic fractional differential equations, Numer. Algorithms 68 (2015), pp. 81–93. https://doi.org/10.1007/s11075-014-9839-7.
  • M. Kamrani and N. Jamshidi, Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), pp. 1–10. https://doi.org/10.1016/j.cnsns.2016.07.023.
  • P.E. Kloeden, A. Neuenkirch, and R. Pavani, Synchronization of noisy dissipative systems under discretization, J. Difference Equ. Appl. 15 (2009), pp. 785–801. https://doi.org/10.1080/10236190701754222.
  • G.J. Lord, C.E. Powell, and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge Texts in Applied Mathematics, Cambridge University Press, New York, 2014. http://doi.org/10.1017/CBO9781139017329.
  • Y. Maday, A.T. Patera, and E.M. Rønquist, An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow, J. Sci. Comput. 5 (1990), pp. 263–292. https://doi.org/10.1007/BF01063118.
  • B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), pp. 422–437. https://doi.org/10.1137/1010093.
  • B. Maslowski and B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stochastic Anal. Appl. 22 (2004), pp. 1577–1607. https://doi.org/10.1081/SAP-200029498.
  • J. Mémin, Y. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statist. Probab. Lett. 51 (2001), pp. 197–206. https://doi.org/10.1016/S0167-7152(00)00157-7.
  • Y.S. Mishura and G. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, Stochastics 80 (2008), pp. 489–511. https://doi.org/10.1080/17442500802024892.
  • A. Neuenkirch, Optimal approximation of SDE's with additive fractional noise, J. Complexity 22 (2006), pp. 459–474. https://doi.org/10.1016/j.jco.2006.02.001.
  • A. Neuenkirch, Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion, Stochastic Process. Appl. 118 (2008), pp. 2294–2333. https://doi.org/10.1016/j.spa.2008.01.002.
  • I. Nourdin, Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire, C. R. Math. Acad. Sci. Paris 340 (2005), pp. 611–614. https://doi.org/10.1016/j.crma.2005.03.013.
  • D. Nualart and B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stochastic Process. Appl. 119 (2009), pp. 391–409. https://doi.org/10.1016/j.spa.2008.02.016.
  • K. Strehmel, R. Weiner, and H. Podhaisky, Numerik gewöhnlicher Differentialgleichungen: Nichtsteife, steife und differential-algebraische Gleichungen, Wiesbaden: Vieweg+Teubner Verlag, 2012.
  • A. Tambue and J.M.T. Ngnotchouye, Weak convergence for a stochastic exponential integrator and finite element discretization of stochastic partial differential equation with multiplicative & additive noise, Appl. Numer. Math. 108 (2016), pp. 57–86. http://doi.org/10.1016/j.apnum.2016.04.013.
  • X. Wang, R. Qi, and F. Jiang, Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations, BIT 57 (2017), pp. 557–585. https://doi.org/10.1007/s10543-016-0639-4.
  • G. Yang, Q. Ma, X. Li, and X. Ding, Structure-preserving stochastic conformal exponential integrator for linearly damped stochastic differential equations, Calcolo 56 (2019), Article ID 5, 20. https://doi.org/10.1007/s10092-019-0302-y.
  • M. Zähle, Stochastic differential equations with fractal noise, Math. Nachr. 278 (2005), pp. 1097–1106. https://doi.org/10.1002/mana.200310295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.