95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A space-time Galerkin Müntz spectral method for the time fractional Fokker–Planck equation

, & ORCID Icon
Pages 407-431 | Received 05 Jul 2023, Accepted 29 Dec 2023, Published online: 23 Mar 2024

References

  • R. Almeida, A caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. 44 (2017), pp. 460–481.
  • R. Almeida, A. Malinowska, and M. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 (2018), pp. 336–352.
  • E. Barkai, Fractional Fokker–Planck equation, solution, and application, Phys. Rev. E. 63 (2001), pp. 046118.
  • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation, Phys. Rev. E. 61 (2000), pp. 132–138.
  • D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resourc. Res. 36 (2000), pp. 1413–1423.
  • X. Cao, J. Fu, and H. Huang, Numerical method for the time fractional Fokker–Planck equation, Adv. Appl. Math. Mech. 4 (2012), pp. 848–863.
  • S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximations for the fractional Fokker–Planck equation, Appl. Math. Model. 33 (2009), pp. 256–273.
  • S. Chen, J. Shen, and L.L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput. 85 (2016), pp. 1603–1638.
  • W. Deng, Numerical algorithm for the time fractional Fokker–Planck equation, J. Comput. Phys. 227 (2007), pp. 1510–1522.
  • W. Deng, Finite element method for the space and time fractional Fokker–Planck equation, SIAM J. Numer. Anal. 47 (2008), pp. 204–226.
  • K. Diethelm, N. Ford, and A. Freed, Detailed error analysis for a fractional adams method, Numer. Algorithms 36 (2004), pp. 31–52.
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ. 22 (2006), pp. 558–576.
  • H. Fu, G.C. Wu, G. Yang, and L.L. Huang, Continuous time random walk to a general fractional Fokker–Planck equation on fractal media, Eur. Phys. J Spec. Top. 230 (2021), pp. 3927–3933.
  • I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, and P. Hänggi, Current and universal scaling in anomalous transport, Phys. Rev. E. 73 (2006), pp. 020101.
  • B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory. 128 (2004), pp. 1–41.
  • E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, and P. Hänggi, Fractional Fokker–Planck dynamics: numerical algorithm and simulations, Phys. Rev. E. 73 (2006), pp. 046133.
  • D. Hou and C. Xu, A fractional spectral method with applications to some singular problems, Adv. Comput. Math. 43 (2017), pp. 911–944.
  • D. Hou, M. Hasan, and C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math. 18 (2018), pp. 43–62.
  • M. Izadkhah, J. Saberi-Nadjafi, and F. Toutounian, An extension of the Gegenbauer pseudospectral method for the time fractional Fokker–Planck equation, Math. Methods Appl. Sci. 41 (2018), pp. 1301–1315.
  • M. Javidi and M.S. Heris, A predictor–corrector scheme for solving the time fractional Fokker–Planck equation with uniform and non-uniform meshes, Comput. Appl. Math. 40 (2021), pp. 1–23.
  • Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation, Appl. Math. Model. 39 (2015), pp. 1163–1171.
  • Y. Jiang and X. Xu, A monotone finite volume method for time fractional Fokker–Planck equations, Sci. China Math. 62 (2019), pp. 783–794.
  • G. Jumarie, A Fokker–Planck equation of fractional order with respect to time, J. Math. Phys. 33 (1992), pp. 3536–3542.
  • A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • D. Kusnezov, A. Bulgac, and G.D. Dang, Quantum Lévy processes and fractional kinetics, Phys. Rev. Lett. 82 (1999), pp. 1136–1139.
  • K. Le, W. McLean, and K. Mustapha, Numerical solution of the time-fractional Fokker–Planck equation with general forcing, SIAM J. Numer. Anal. 54 (2016), pp. 1763–1784.
  • K. Le, W. McLean, and K. Mustapha, A semidiscrete finite element approximation of a time-fractional Fokker–Planck equation with nonsmooth initial data, SIAM J. Sci. Comput. 40 (2018), pp. A3831–A3852.
  • E.K. Lenzi, R.S. Mendes, K.S. Fa, L.C. Malacarne, and L.R.D. Silva, Anomalous diffusion: Fractional Fokker–Planck equation and its solutions, J. Math. Phys. 44 (2003), pp. 2179–2185.
  • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), pp. 2108–2131.
  • D. Li, W. Sun, and C. Wu, A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math. Theor. Meth. Appl. 14 (2021), pp. 1017–1041.
  • R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker–Planck equation approach, Phys. Rev. Lett. 82 (1999), pp. 3563–3567.
  • R. Metzler, E. Barkai, and J. Klafter, Deriving fractional Fokker–Planck equations from a generalised master equation, Europhys. Lett. 46 (1999), pp. 431–436.
  • R. Metzler and J. Klafter, The random Walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77.
  • R. Metzler and T.F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chem. Phys. 284 (2002), pp. 67–90.
  • K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2010), pp. 426–447.
  • S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.
  • J. Shen, Efficient spectral-Galerkin method I. direct solvers of second and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput. 15 (1994), pp. 1489–1505.
  • C. Sheng and J. Shen, A space-time Petrov-Galerkin spectral method for time fractional diffusion equation, Numer. Math. Theor. Meth. Appl. 11 (2018), pp. 854–876.
  • M. Stynes, E. O'Riordan, and J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55 (2017), pp. 1057–1079.
  • S. Vong and Z. Wang, A high order compact finite difference scheme for time fractional Fokker–Planck equations, Appl. Math. Lett. 43 (2015), pp. 38–43.
  • C. Wang, W. Deng, and X. Tang, A sharp α-robust L1 scheme on graded meshes for two-dimensional time tempered fractional Fokker–Planck equation, arXiv preprint arXiv:2205.15837; 2022.
  • J.L. Wei, G.C. Wu, B.Q. Liu, and Z. Zhao, New semi-analytical solutions of the time-fractional Fokker–Planck equation by the neural network method, Optik 259 (2022), pp. 168896.
  • S. Yan and M. Cui, Finite difference scheme for the time-fractional Fokker–Planck equation with time- and space-dependent forcing, Int. J. Comput. Math. 96 (2019), pp. 379–398.
  • Y. Yang, Y. Huang, and Y. Zhou, Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods, J. Comput. Appl. Math. 339 (2018), pp. 389–404.
  • W. Zeng, J. Hong, and C. Xu, Error analysis of a mapped L1 method for the time fractional diffusion equation, Submitted; 2023.
  • W. Zeng, A. Xiao, W. Bu, J. Wang, and S. Li, A space-time Petrov-Galerkin spectral method for time fractional Fokker–Planck equation with nonsmooth solution, E. Asian J. Appl. Math. 10 (2020), pp. 89–105.
  • H. Zhang, X. Jiang, and X. Yang, A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem, Appl. Math. Comput. 320 (2018), pp. 302–318.
  • M. Zheng, F. Liu, I. Turner, and V. Anh, A novel high order space-time spectral method for the time fractional Fokker–Planck equation, SIAM J. Sci. Comput. 37 (2015), pp. A701–A724.
  • S. Zhou and Y. Jiang, Finite volume methods for n-dimensional time fractional Fokker–Planck equations, Bull. Malays. Math. Sci. Soc. 42 (2019), pp. 3167–3186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.