256
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact angle controlled integrated guidance and control with input and state constraints

, , &
Pages 796-810 | Received 06 Apr 2022, Accepted 26 Jan 2023, Published online: 26 Feb 2023

References

  • Banerjee, A., Mukherjee, J., Nabi, M. U., & Kar, I. N. (2021). An artificial delay based robust guidance strategy for an interceptor with input saturation. ISA Transactions, 109, 34–48. https://doi.org/10.1016/j.isatra.2020.09.013
  • Chao, M., Sun, R., & Wang, X. (2018). Velocity control based on active disturbance rejection for air-breathing supersonic vehicles. Complexity, 2018, 1–11. https://doi.org/10.1155/2018/6217657
  • Chen, M., Ge, S. S., & Ren, B. (2011). Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 47(3), 452–465. https://doi.org/10.1016/j.automatica.2011.01.025
  • Cong, Z., & Wu, Y. J. (2016). Non-singular terminal dynamic surface control based integrated guidance and control design and simulation. ISA Transactions, 63, 112–120. https://doi.org/10.1016/j.isatra.2016.03.013
  • Farrell, J. A., Polycarpou, M., Sharma, M., & Dong, W. (2009). Command filtered backstepping. IEEE Transactions on Automatic Control, 54(6), 1391–1395. https://doi.org/10.1109/TAC.2009.2015562
  • Fu, Z., Zhang, K., Gan, Q., & Yang, S. (2020). Integrated guidance and control with input saturation and impact angle constraint. Discrete Dynamics in Nature and Society, 2020, 5917983–5918002. https://doi.org/10.1155/2020/5917983
  • Fu, Z., Zhao, C., & Sun, X. (2017). Integrated optimal control law design for missile guidance and control with terminal impact angle constraint. Electronics Optics and Control, 24(8), 5–8.
  • He, S., Song, T., & Lin, D. (2017). Impact angle constrained integrated guidance and control for maneuvering target interception. Journal of Guidance Control and Dynamics, 40(10), 2653–2661. https://doi.org/10.2514/1.G002201
  • Hou, M., Liang, X., & Duan, G. (2013). Adaptive block dynamic surface control for integrated missile guidance and autopilot. Chinese Journal of Aeronautics, 26(3), 741–750. https://doi.org/10.1016/j.cja.2013.04.035
  • Hu, G., Guo, J., & Zhou, J. (2019). Integrated guidance and control of interceptors with impact angle constraint against a high-speed maneuvering target. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 223(14), 5192–5204. https://doi.org/10.1177/0954410019841138
  • Huang, L., Yi, W. J., Guan, J., & Yuan, D. (2019). Generalized weighted optimal guidance laws with multiple terminal constrains. Journal of Ordnance Equipment Engineering, 40(8), 21–26.
  • Jing, J., Zhao, L., & Niu, Z. (2018). Observer-based integrated guidance and control under terminal impact angle constraint. In Chinese automation congress (pp. 991–997). CAC.
  • Jing, Y., & Wang, Z. (2016). Integrated guidance and control of agile missiles using the finite SDRE approach. In AIAA guidance, navigation, and control conference (pp. 1–15). AIAA.
  • Kang, C. (2020). Full state constrained stochastic adaptive integrated guidance and control for STT missiles with non-affine aerodynamic characteristics. Information Sciences, 529, 42–58. https://doi.org/10.1016/j.ins.2020.03.061
  • Khankalantary, S., & Sheikholeslam, F. (2020). Robust extended state observer-based three dimensional integrated guidance and control design for interceptors with impact angle and input saturation constraint. ISA Transactions, 104, 299–309. https://doi.org/10.1016/j.isatra.2020.05.019
  • Levy, M., Shima, T., & Gutman, S. (2013). Linear quadratic integrated versus separated autopilot guidance design. Journal of Guidance Control and Dynamics, 36(6), 1722–1730. https://doi.org/10.2514/1.61363
  • Li, H. Y., Wang, J., He, S. M., & Li, C. H. (2021). Nonlinear optimal impact-angle-constrained guidance with large initial heading error. Journal of Guidance, Control, and Dynamics, 44(4), 1–14. https://doi.org/10.2514/1.G005440.c1
  • Liu, W., Wei, Y., & Duan, G (2018). Barrier lyapunov function-based integrated guidance and control with input saturation and state constraints. Aerospace Science and Technology, 84, 845–855. https://doi.org/10.1016/j.ast.2018.11.019
  • Liu, W., Wei, Y., Hou, M., & Duan, G. (2019). Integrated guidance and control with partial state constraints and actuator faults. Journal of the Franklin Institute, 356(9), 4785–4810. https://doi.org/10.1016/j.jfranklin.2019.04.008
  • Liu, X., Huang, W., & Du, L. (2017). An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles. ISA Transactions, 66, 164–175. https://doi.org/10.1016/j.isatra.2016.10.008
  • Ming, C., Wang, X., & Sun, R. (2019). A novel non-singular terminal sliding mode control based integrated missile guidance and control with impact angle constraint. Aerospace Science and Technology, 94, 105368–105380. https://doi.org/10.1016/j.ast.2019.105368
  • Ming, X., Balakrishnan, S. N., & Ohlmeyer, E. J. (2014). Integrated guidance and control of missiles with integrated guidance and control of missiles with θ-D method. IFAC Proceedings Volumes, 37(6), 629–634. https://doi.org/10.1016/S1474-6670(17)32246-2
  • Padhi, R., Chawla, C., & Das, P. G. (2014). Partial integrated guidance and control of interceptors for high-speed ballistic targets. Journal of Guidance Control and Dynamics, 37(1), 149–163. https://doi.org/10.2514/1.61416
  • Park, B., Kim, T., & Tahk, M. (2017). Biased PNG with terminal angle constraint for intercepting non-maneuvering targets under physical constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1562–1572. https://doi.org/10.1109/TAES.7
  • Park, B. G., Kim, T. H., & Tahk, M. J. (2016). Range-to-go weighted optimal guidance with impact angle constraint and Seeker's look angle limits. IEEE Transactions on Aerospace and Electronic Systems, 52(3), 1241–1256. https://doi.org/10.1109/TAES.2016.150415
  • Ren, B., Ge, S. S., Tee, K. P., & Lee, T. H. (2010). Adaptive neural control for output feedback nonlinear systems using a Barrier Lyapunov function. IEEE Transactions on Neural Networks, 21(8), 1229–1345. https://doi.org/10.1109/TNN.2010.2047115
  • Song, J. H., & Song, S. M. (2019). Robust impact angle constraints guidance law with autopilot lag and acceleration saturation consideration. Transactions of the Institute of Measurement and Control, 41(1), 182–192. https://doi.org/10.1177/0142331218758885
  • Sun, L. H., Wang, W. H., Yi, R., & Xiong, S. (2016). A novel guidance law using fast terminal sliding mode control with impact angle constraints. ISA Transactions, 64, 12–23. https://doi.org/10.1016/j.isatra.2016.05.004
  • Swaroop, D., Gerdes, J. C., Yip, P. P., & Hedrick, J. K. (1997). Dynamic surface control of nonlinear systems. In IEEE Proceedings of 16th American Control Conference (pp. 3028–3034). IEEE.
  • Tee, K. P., & Ge, S. S. (2012). Control of state-constrained nonlinear systems using integral Barrier Lyapunov functionals. In IEEE 51st IEEE conference on decision and control (pp. 3239–3244). IEEE.
  • Tee, K. P., Ge, S. S., & Tay, E. H. (2009). Barrier Lyapunov functions for the control of output constrained nonlinear systems. Automatica, 45(4), 918–927. https://doi.org/10.1016/j.automatica.2008.11.017
  • Wang, C., Dong, W., Wang, J., San, J., & Xi, M. (2021). Guidance law design with fixed-time convergent error dynamics. Journal of Guidance, Control, and Dynamics, 44(8), 1–10. https://doi.org/10.2514/1.G005833
  • Wang, J. H., Liu, L. H., Zhao, T., & Tang, G. J. (2016). Integrated guidance and control for hypersonic vehicles in dive phase with multiple constraints. Aerospace Science and Technology, 53, 103–115. https://doi.org/10.1016/j.ast.2016.03.019
  • Wang, S., Wang, W., & Xiong, S. (2016). Impact angle constrained three-dimensional integrated guidance and control for STT missile in the presence of input saturation. ISA Transactions, 64, 151–160. https://doi.org/10.1016/j.isatra.2016.04.026
  • Wang, W., Xiong, S., Wang, S., Song, S., & Lai, C. (2016). Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure. Aerospace Science and Technology, 53, 169–187. https://doi.org/10.1016/j.ast.2016.03.015
  • Yang, S., Guo, J., & Zhou, J. (2018). New integrated guidance and control of homing missiles with an impact angle against a ground target. International Journal of Aerospace Engineering, 2, 1–10. https://doi.org/10.1155/2018/3968242
  • Zhang, P., & Zhang, X. (2022). A novel adaptive three-dimensional finite-time guidance law with terminal angle constraints for interception of maneuvering targets. International Journal of Control, 95(6), 1590–1599. https://doi.org/10.1080/00207179.2020.1865571
  • Zhao, B., Xu, S., Guo, J., Jiang, R., & Zhou, J. (2019). Integrated strapdown missile guidance and control based on neural network disturbance observer. Aerospace Science and Technology, 84, 170–181. https://doi.org/10.1016/j.ast.2018.10.025
  • Zhou, J., Lei, H. M., Li, J., & Shao, L. (2014). Design of integrated guidance and control of missile in pitch channel. Modern Defence Technology, 42(1), 128–131.
  • Zhou, X., Wang, W., Liu, Z., Liang, C., & Lai, C. (2019). Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control. IEEE Access, 7, 126857–126870. https://doi.org/10.1109/Access.6287639
  • Zhu, J. W., Liu, L. H., Tang, G. J., & Bao, W. M. (2014). Three-dimensional nonlinear coupling guidance for hypersonic vehicle in dive phase. Science China, 57(9), 1824–1833. https://doi.org/10.1007/s11431-014-5615-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.