101
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear controller design for hydraulic turbine regulating systems via immersion and invariance

ORCID Icon
Pages 1057-1071 | Received 23 Apr 2022, Accepted 08 Mar 2023, Published online: 21 Apr 2023

References

  • Astolfi, A., Karagiannis, D., & Ortega, R. (2007). Nonlinear and adaptive control with applications. Springer-Verlag.
  • Astolfi, A., & Ortega, R. (2003). Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 48(4), 590–606. https://doi.org/10.1109/TAC.2003.809820
  • Chen, Z., Yuan, X., Ji, B., Wang, P., & Tian, H. (2014). Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conversion and Management, 84, 390–404. https://doi.org/10.1016/j.enconman.2014.04.052
  • Chen, Z., Yuan, X., & Lei, X. (2019). Global fast terminal sliding mode controller for hydraulic turbine regulating system with actuator dead zone. Journal of the Franklin Institute, 356(15), 8366–8387. https://doi.org/10.1016/j.jfranklin.2019.08.006
  • Gao, C., Li, J., Fan, Y., & Jing, W. (2018). Immersion and invariance-based control of novel moving-mass flight vehicles. Aerospace Science and Technology, 74, 1004–1015. https://doi.org/10.1016/j.ast.2017.12.017
  • Gao, Q., Zuo, Z., & Ding, Z. (2020). Parametric adaptive control of single-rod electrohyraulic system with block-strict-feedback model. Automatica, 113, 108687–9. https://doi.org/10.1016/j.automatica.2019.108687
  • Gong, L., Wang, M., & Zhu, C. (2020). Immersion and invariance manifold adaptive control of the DC-link voltage in flywheel energy storage system discharge. IEEE Access, 8, 144489–144502. https://doi.org/10.1109/Access.6287639
  • Han, Q., & Liu, X. (2020). Robust I&I adaptive control for a class of quadrotors with disturbances. IEEE Access, 8, 216519–216528. https://doi.org/10.1109/Access.6287639
  • Hao, W., Xian, B., & Xie, T. (2022). Fault tolerant position tracking control design for an tilt tri-rotor unmanned aerial vehicle. IEEE Transactions on Industrial Electronics, 69(1), 604–612. https://doi.org/10.1109/TIE.2021.3050384
  • Huang, S., Xiong, L., Wang, J., Li, P., Wang, Z., & Ma, M. (2020). Fixed-time synergetic controller for stabilization of hydraulic turbine regulating system. Renewable Energy, 157, 1233–1242. https://doi.org/10.1016/j.renene.2020.05.071
  • Jiang, C., Ma, Y., & Wang, C. (2006). PID controller gains optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP). Energy Conversion and Management, 47(9-10), 1222–1230. https://doi.org/10.1016/j.enconman.2005.07.009
  • Kanchanahanathai, A. (2014a). Immersion and invariance-based nonlinear dual-excitation and steam-valving control of synchronous generators. International Transactions of Electrical Energy, 24(12), 1671–1687. https://doi.org/10.1002/etep.v24.12
  • Kanchanahanathai, A., Chankong, V., & Loparo, K. A. (2015). Nonlinear generator excitation and superconducting magnetic energy storage control for transient stability enhancement via immersion and invariance. Transactions of Instititute of Measusrement Control, 37(10), 1217–1231. https://doi.org/10.1177/0142331214560048
  • Kanchanaharuthai, A. (2014b). Immersion and invariance-based nonlinear coordinated controller for generator excitation and static synchronous compensator of power systems. Electric Power Component and Systems, 42(10), 1004–1015. https://doi.org/10.1080/15325008.2014.913734
  • Kanchanaharuthai, A, & Mujjalinvimut, E. (2017). Application of adpative synergetic control to power systems with superconducting magnetic energy storage system. International Journal of Innovative Computing, Information and Control, 13, 1873–1885. https://doi.org/10.24507/ijicic.13.06.1873
  • Kanchanaharuthai, A., & Mujjalinvimut, E. (2022). Fixed-time command-filtered backstepping control design for hydraulic turbine regulating systems. Renewable Energy, 184, 1091–1103. https://doi.org/10.1016/j.renene.2021.12.004
  • Khalil, H. K (2002). Nonlinear systems (3rd ed.). Prentice-Hall.
  • Khan, U. I., & Dhaouadi, R. (2015). Robust control of elastic drives through immersion and invariance. IEEE Transactions on Industrial Electronics, 62(3), 1572–1580. https://doi.org/10.1109/TIE.2014.2363435
  • Krstic, M., Kanellakopoulos, I., & Kokotivic, P (1995). Nonlinear and adaptive control design. John Wiley & Sons.
  • Poonyanirun, S., & Kanchanahanathai, A. (2022). Congestion tracking control for wireless TCP/AQM network via immersion and invariance. Asian Journal of Control, 1–17. https://doi.org/10.1002/asjc.2824
  • Sabzalian, M. H., Mohammadzadeh, A., Lin, S., & Zhang, W. (2019). New approach to control the induction motors based on immersion and invaraince technique. IET Control Theory and Appication, 13(10), 1466–1472. https://doi.org/10.1049/cth2.v13.10
  • Tavan, M., Sabahi, K., Hajizadeh, A., Soltani, M. N., & Jessen, K. (2021). Overcoming the detectability obstacle in adaptive output feedback control of DC-DC boost converter with unknown load. IEEE Transactions on Control Systems Technology, 29(6), 2678–2686. https://doi.org/10.1109/TCST.2020.3044378
  • Wimböck, T., Ott, C., & Hirzinger, G. (2010). Immersion and invariance control for an antagonistic joint with nonlinear mechanical stiffness. In 49th IEEE conference on decision and control (pp. 1128–1135). IEEE. http://doi.org/10.1109/CDC.2010.5717891
  • Xu, Q. (2017). Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control. IEEE Transactions on Automation Science Engineering, 14(1), 238–248. https://doi.org/10.1109/TASE.2016.2575845
  • Yi, Y., & Chen, D. (2019). Disturbance observer-based backstepping sliding mode fault-tolerant control for the hydro-turbine governing system with dead-zone input. ISA Transactions, 88, 127–141. https://doi.org/10.1016/j.isatra.2018.11.032
  • Yuan, X., Chen, Z., Yuan, Y., & Huang, Y. (2015). Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method. Energy, 93, 173–187. https://doi.org/10.1016/j.energy.2015.09.025
  • Yuan, X., Chen, Z., Yuan, Y., Huang, Y., Li, X., & Li, W. (2016). Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method. Mathematics and Computers in Simulation, 119, 18–34. https://doi.org/10.1016/j.matcom.2015.08.020
  • Zhu, W., Zheng, Y., Dai, J., & Zhou, J. (2017). Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit. Engineering Applications of Artificial Intellignece, 58, 79–87. https://doi.org/10.1016/j.engappai.2016.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.