270
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A new dynamic sliding mode controller with disturbance observer for controlling integrating processes with time delay

ORCID Icon & ORCID Icon
Pages 1136-1156 | Received 28 Nov 2021, Accepted 16 Mar 2023, Published online: 24 Apr 2023

References

  • Alyoussef, F., & Kaya, I. (2023a). Simple PI-PD tuning rules based on the centroid of the stability region for controlling unstable and integrating processes. ISA Transactions, 134, 238–255. https://doi.org/10.1016/j.isatra.2022.08.007
  • Alyoussef, F., & Kaya, I. (2023b). Proportional–integral and proportional–derivative controller design based on analytically computed centroid point for controlling integrating processes. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering. https://doi.org/10.1177/09596518221143815
  • Anil, C., & Padma Sree, R. (2015). Tuning of PID controllers for integrating systems using direct synthesis method. ISA Transactions, 57, 211–219. https://doi.org/10.1016/j.isatra.2015.03.002
  • Brahmi, B., Laraki, M. H., Brahmi, A., Saad, M., & Rahman, M. H. (2020). Improvement of sliding mode controller by using a new adaptive reaching law: Theory and experiment. ISA Transactions, 97, 261–268. https://doi.org/10.1016/j.isatra.2019.08.010
  • Camacho, O., & De la Cruz, F. (2004). Smith predictor based-sliding mode controller for integrating processes with elevated deadtime. ISA Transactions, 43(2), 257–270. https://doi.org/10.1016/S0019-0578(07)60035-4
  • Camacho, O. E., Rojas, R. D., Garcia, W. M., & Alvarez, A. (1998). Sliding mode control: A robust approach to integrating systems with dead time. Proceedings of the 1998 Second IEEE International Caracas Conference on Devices, Circuits and Systems. ICCDCS 98. On the 70th Anniversary of the MOSFET and 50th of the BJT (Cat. No.98TH8350). https://doi.org/10.1109/ICCDCS.1998.705872
  • Camacho, O., Rojas, R., & García-Gabín, W. (2007). Some long time delay sliding mode control approaches. ISA Transactions, 46(1), 95–101. https://doi.org/10.1016/j.isatra.2006.06.002
  • Camacho, O., Rojas, R., & Garcıía, W. (1999). Variable structure control applied to chemical processes with inverse response. ISA Transactions, 38(1), 55–72. https://doi.org/10.1016/S0019-0578(99)00005-1
  • Camacho, O., & Smith, C. A. (2000). Sliding mode control: An approach to regulate nonlinear chemical processes. ISA Transactions, 39(2), 205–218. https://doi.org/10.1016/S0019-0578(99)00043-9
  • Chakraborty, S., Ghosh, S., & Naskar, A. K. (2017). I-PD controller for integrating plus time-delay processes. IET Control Theory & Applications, 11(17), 3137–3145. https://doi.org/10.1049/iet-cta.2017.0112
  • Chen, C. T., & Peng, S. T. (2005). Design of a sliding mode control system for chemical processes. Journal of Process Control, 15(5), 515–530. https://doi.org/10.1016/j.jprocont.2004.11.001
  • De la Parte, M. F., Camacho, O., & Camacho, E. F. (2002). Development of a GPC-based sliding mode controller. ISA Transactions, 41(1), 19–30. https://doi.org/10.1016/S0019-0578(07)60199-2
  • Ding, S., Chen, W. H., Mei, K., & Murray-Smith, D. J. (2020). Disturbance observer design for nonlinear systems represented by input-output models. IEEE Transactions on Industrial Electronics, 67(2), 1222–1232. https://doi.org/10.1109/TIE.2019.2898585
  • Espín, J., Castrillon, F., Leiva, H., & Camacho, O. (2022). A modified Smith predictor based – sliding mode control approach for integrating processes with dead time. Alexandria Engineering Journal, 61(12), 10119–10137. https://doi.org/10.1016/j.aej.2022.03.045
  • Fallaha, C. J., Saad, M., Kanaan, H. Y., & Al-Haddad, K. (2011). Sliding-mode robot control with exponential reaching law. IEEE Transactions on Industrial Electronics, 58(2), 600–610. https://doi.org/10.1109/TIE.2010.2045995
  • Fei, J., & Chen, Y. (2020). Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network. IEEE Transactions on Power Electronics, 35(9), 9904–9922. https://doi.org/10.1109/TPEL.2020.2974470
  • Han, Y., Cheng, Y., & Xu, G. (2019). Trajectory tracking control of AGV based on sliding mode control with the improved reaching law. IEEE Access, 7, 20748–20755. https://doi.org/10.1109/ACCESS.2019.2897985
  • He, T., Wu, Z., Li, D., & Wang, J. (2020). A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Transactions on Industrial Electronics, 67(4), 3191–3201. https://doi.org/10.1109/TIE.2019.2908592
  • Herrera, M., Camacho, O., Leiva, H., & Smith, C. (2020). An approach of dynamic sliding mode control for chemical processes. Journal of Process Control, 85, 112–120. https://doi.org/10.1016/j.jprocont.2019.11.008
  • Hou, Q., Ding, S., & Yu, X. (2021). Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer. IEEE Transactions on Energy Conversion, 36(c), 2591–2599. https://doi.org/10.1109/tec.2020.2985054
  • Iglesias, E., García, Y., Sanjuan, M., Camacho, O., & Smith, C. (2007). Fuzzy surface-based sliding mode control. ISA Transactions, 46(1), 73–83. https://doi.org/10.1016/j.isatra.2006.04.002
  • Jin, Q. B., & Liu, Q. (2014). Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof. Journal of Process Control, 24(3), 22–32. https://doi.org/10.1016/j.jprocont.2013.12.011
  • Kadam, S. D. (2017). Disturbance observer based control of integrating processes with dead-time using PD controller. ArXiv:1711.11250, 1–17. https://arxiv.org/abs/1711.11250
  • Karami-Mollaee, A., Tirandaz, H., & Barambones, O. (2019). Neural dynamic sliding mode control of nonlinear systems with both matched and mismatched uncertainties. Journal of the Franklin Institute, 356(8), 4577–4600. https://doi.org/10.1016/j.jfranklin.2019.04.019
  • Karan, S., & Dey, C. (2021). Modified smith predictor-based all-proportional-derivative control for second-order delay-dominated integrating processes. Asia-Pacific Journal of Chemical Engineering, 16(2), 1–20. https://doi.org/10.1002/apj.2591
  • Karan, S., Dey, C., & Mukherjee, S. (2022). Simple internal model control based modified Smith predictor for integrating time delayed processes with real-time verification. ISA Transactions, 121, 240–257. https://doi.org/10.1016/j.isatra.2021.04.008
  • Kaya, I. (1999). Relay feedback identification and model based controller design (Issue December) [University of Sussex]. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299955
  • Kaya, I. (2004). Two-degree-of-freedom IMC structure and controller design for integrating processes based on gain and phase-margin specifications. IEE Proceedings - Control Theory and Applications, 151(4), 481–487. https://doi.org/10.1049/ip-cta:20040658
  • Kaya, I. (2007). Sliding-mode control of stable processes. Industrial & Engineering Chemistry Research, 46(2), 571–578. https://doi.org/10.1021/ie0607806
  • Kaya, I., & Peker, F. (2020). Optimal I-PD controller design for setpoint tracking of integrating processes with time delay. IET Control Theory & Applications, 14(18), 2814–2824. https://doi.org/10.1049/iet-cta.2019.1378
  • Kwak, H. J., Sung, S. W., & Lee, I. B. (1997). On-line process identification and autotuning for integrating processes. Industrial & Engineering Chemistry Research, 36(12), 5329–5338. https://doi.org/10.1021/ie9605600
  • Li, S., Zhou, M., & Yu, X. (2013). Design and implementation of chattering free sliding mode control method for PMSM speed regulation system. IEEE Transactions on Industrial Informatics, 9(4), 1879–1891. https://doi.org/10.1109/TII.2012.2226896
  • Lin, F. J., Hung, Y. C., & Ruan, K. C. (2014). An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Transactions on Fuzzy Systems, 22(6), 1598–1611. https://doi.org/10.1109/TFUZZ.2014.2300168
  • Liu, K., Ji, H., & Zhang, Y. (2019). Extended state observer based adaptive sliding mode tracking control of wheeled mobile robot with input saturation and uncertainties. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5460–5476. https://doi.org/10.1177/0954406219849445
  • Liu, T., García, P., Chen, Y., Ren, X., Albertos, P., & Sanz, R. (2018). New predictor and 2DOF control scheme for industrial processes with long time delay. IEEE Transactions on Industrial Electronics, 65(5), 4247–4256. https://doi.org/10.1109/TIE.2017.2760839
  • Mataušek, M. R., & Ribić, A. I. (2009). Design and robust tuning of control scheme based on the PD controller plus disturbance observer and low-order integrating first-order plus dead-time model. ISA Transactions, 48(4), 410–416. https://doi.org/10.1016/j.isatra.2009.06.003
  • Musmade, B. B., Khandekar, A. A., & Patre, B. M. (2017). Sliding mode control design for robust tracking of open loop stable processes with experimental application. International Journal of Dynamics and Control, 5(4), 1201–1210. https://doi.org/10.1007/s40435-016-0273-7
  • Seshagiri, A., Rao, V. S. R., & Chidambaram, M. (2009). Direct synthesis-based controller design for integrating processes with time delay. Journal of the Franklin Institute, 346(1), 38–56. https://doi.org/10.1016/j.jfranklin.2008.06.004
  • Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., & Man, Z. (2021). Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Transactions on Industrial Informatics, 17(11), 7479–7488. https://doi.org/10.1109/TII.2021.3057832
  • Shi, Y., Wang, J., & Zhang, Y. (2012). Sliding mode predictive control of main steam pressure in coal-fired power plant boiler. Chinese Journal of Chemical Engineering, 20(6), 1107–1112. https://doi.org/10.1016/S1004-9541(12)60594-1
  • Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation. Springer. https://doi.org/10.1007/978-0-8176-4893-0
  • Srivastava, S., & Pandit, V. S. (2017). A 2-Dof LQR based PID controller for integrating processes considering robustness/performance tradeoff. ISA Transactions, 71(2), 426–439. https://doi.org/10.1016/j.isatra.2017.09.010
  • Tang, Y., Li, J., Li, S., Cao, Q., & Wu, Y. (2019). Non-linear extended state observer-based sliding mode control for a direct-driven wind energy conversion system with permanent magnet synchronous generator. The Journal of Engineering, 2019(15), 613–617. https://doi.org/10.1049/joe.2018.9392
  • Tao, M., Chen, Q., He, X., & Sun, M. (2019). Adaptive fixed-time fault-tolerant control for rigid spacecraft using a double power reaching law. International Journal of Robust and Nonlinear Control, 29(12), 4022–4040. https://doi.org/10.1002/rnc.4593
  • Tian, D., Xu, R., Sariyildiz, E., & Gao, H. (2022). An adaptive switching-gain sliding-mode-assisted disturbance observer for high-precision servo control. IEEE Transactions on Industrial Electronics, 69(2), 1762–1772. https://doi.org/10.1109/TIE.2021.3057004
  • Tian, Y.-C., Tadé, M. O., & Tang, J. (1999). A nonlinear PID controller with applications. IFAC Proceedings Volumes, 32(2), 2657–2661. https://doi.org/10.1016/S1474-6670(17)56452-6
  • Wang, J., Zhao, L., & Yu, L. (2021). Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation. IEEE Transactions on Industrial Electronics, 68(1), 756–766. https://doi.org/10.1109/TIE.2020.2975487
  • Wang, X., Sun, S., Kampen, E. V., & Chu, Q. (2019). Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerospace Science and Technology, 87, 417–430. https://doi.org/10.1016/j.ast.2019.03.001
  • Wu, H., Ni, H., & Heydt, G. T. (2002). The impact of time delay on robust control design in power systems. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. https://doi.org/10.1109/pesw.2002.985276
  • Xiu, C., & Guo, P. (2018). Global terminal sliding mode control with the quick reaching law and its application. IEEE Access, 6, 49793–49800. https://doi.org/10.1109/ACCESS.2018.2868785
  • Yi, H., Su, Z., Wang, P., & Chen, Z. (2023). Delay robustness-constrained control of integrating processes with optimal tracking and quantified disturbance rejection ☆. ISA Transactions, 135(2022), 524–536. https://doi.org/10.1016/j.isatra.2022.09.041
  • Zhang, W., Cui, Y., Ding, X., Yin, Z., & Wang, Y. (2021). A novel tuning method of differential forward robust PID controller for integrating systems plus time delay based on direct synthesis method. International Journal of Systems Science, 52(2), 238–262. https://doi.org/10.1080/00207721.2020.1825871
  • Zhang, X. (2022). SMC for nonlinear systems with mismatched uncertainty using Lyapunov-functionintegral sliding mode. International Journal of Control, 95(10), 2710–2725. https://doi.org/10.1080/00207179.2021.1930177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.