289
Views
34
CrossRef citations to date
0
Altmetric
Research Article

AMPA RECEPTOR REGULATION MECHANISMS: FUTURE TARGET FOR SAFER NEUROPROTECTIVE DRUGS

&
Pages 695-734 | Published online: 07 Jul 2009

REFERENCE

  • Aguirre, J. A., Andbjer, B., Gonzalez-Baron, S., Hansson, A., Stromberg, I., Agnati, L. F., & Fuxe, K. (2001). Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. Neuroreport, 12(12), 2615–2617.
  • Ahern, G. P., Klyachko, V. A., & Jackson, M. B. (2002). cGMP and S-nitrolysation: Two routes for modulation of neuronal excitability by NO. Trends in Neuroscience, 25(10), 510–517.
  • Aizenman, C. D., Munoz-Elias, G., & Cline, H. T. (2002). Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron, 34(4), 623–634.
  • Anwyl, R. (1999). Metabotropic glutamate receptors: Electrophysiological properties and role in plasticity. Brain Research Reviews, 29(1), 83–120.
  • Armstrong, N., & Gouaux, E. (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron, 28(1), 165–181.
  • Attucci, S., Clodfelter, G. V., Thibault, O., Staton, J., Moroni, F., Landfield, P. W., & Porter, N. M. (2002). Group I metabotropic glutamate receptor inhibition selectively blocks a prolonged Ca2+ elevation associated with age-dependent excitotoxicity. Neu- roscience, 112(1), 183–194.
  • Baude, A., Nusser, Z., Roberts J. D., Mulyihill, E., McIlhinney, R. A., & Somogyi, P. (1993). The metabotropic glutamate receptor (mGluR1) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron, 11(4), 771–787.
  • Borgdorff, A. J., & Choquet, D. (2002). Regulation of AMPA receptor lateral movements. Nature, 417(6889), 649–653.
  • Bortolotto, Z. A., Fitzjohn, S. M., & Collingridge, G. L. (1999). Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Current Opinion in Neuro- biology, 9(3), 299–304.
  • Bowie, D., & Mayer. M. L. (1995). Inward rectification of both AMPA and kainate sub- type glutamate receptors generated by polyamine-mediated ion channel block. Neuron, 15(2),453–462.
  • Braithwaite, S. P., Meyer, G., & Henley, J. M. (2000). Interactions between AMPA recep- tors and intracellular proteins. Neuropharmacology, 39(6), 919–930.
  • Brasnjo, G., & Otis. T. S. (2001). Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term de- pression. Neuron, 31(4), 607–616.
  • Bruno, V., Copani, A., Knopfel, T., Kuhn, R, Casabona, G., Dell’Albani, P., Condorelli, D. F., & Nicoletti, F. (1995). Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology, 34, 1089–1098.
  • Burnashev, N., Monger, H., Seeburg, P. H., & Sakmann, B. (1992). Divalent ion perme- ability of AMPA receptor channels is dominated by the edited form of a single sub- unit. Neuron, 8, 189–198.
  • Carroll, R. C., & Zukin, R. S. (2002). NMDA-receptor trafficking and targeting: Implica- tions for synaptic transmission and plasticity. Trends in Neuroscience, 25, 571–577.
  • Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., Bredt, D. S., & Nicoll, R. A. (2000). Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature, 408, 936–943.
  • Chittajallu, R., Vignes, M., Dey, K. K., Barnes, J. M., Collingridge, G. L., & Henley, J. M. (1996). Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature, 379, 78–81.
  • Choi, D. W. (1992a). Bench to bedside: The glutamate connection. Science, 258, 241– 243.
  • Choi, D. W. (1992b). Excitotoxic cell death. Journal of Neurobiology, 23, 1261–1276.
  • Choi, D. W. (1995). Calcium still center-stage in hypoxic-ischemic neuronal death. Trends in Neuroscience, 18, 58–60.
  • Clapham, D. E. (1995). Calcium signaling. Cell, 80, 259–268.
  • Conti, F., & Weinberg, R. J. (1999). Shaping excitation at glutamatergic synapses. Trends in Neuroscience, 22, 451–458.
  • Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689–695.
  • Craig, A. M., Blackstone, C. D., Huganir, R. L., & Banker, G. (1994). Selective clustering of glutamate and α-aminobutyric acid receptors opposite terminals releasing the corre- sponding neurotransmitter. Proc. Natl. Acad. Sci., 91, 12373–12377.
  • Dev, K. K., Nishimune, A., Henley, J. M., & Nakanishi, S. (1999). The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice vari- ants of AMPA receptor subunits. Neuropharmacology, 38, 635–644.
  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacology Review, 51, 7–61.
  • Dong, H., O’Brien R. J., Fung, E. T., Lanahan, A. A., Worley, P. F., & Huganir, R. L. (1997). GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature, 386(6622), 279–284.
  • Dong, H., Zhang, P., Song, I., Petralia, R. S., Liao, D., & Huganir, R. L. (1999). Char- acterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. Journal of Neuroscience, 19(16), 6930–6941.
  • Dos Santos Villar, F., & Walsh, J. P. (1999). Modulation of long-term synaptic plasticity at excitatory striatal synapses. Neuroscience, 90, 1031–1041.
  • Dunphy, J. T., & Linder, M. E. (1998). Signalling functions of protein palmitoylation. Biochem. Biophys. Acta, 1436, 245–261.
  • El-Husseini, A. E., Schnell, E., Dakoji, S., Sweeney, N., Zhou, O., Prange, O., Gauthier- Campbell, C., Aguilera-Moreno, A., Nicoll, R. A., & Bredt, D. S. (2002). Synaptic strength regulated by palmitate cycling on PSD-95. Cell, 108(6), 849–863.
  • El-Husseini, A. E., Craven, S. E., Chetkovich, D. M., Firestein, B. L., Schnell, E., Aokl, C., & Bredt, D. S. (2000). Dual palmitoylation of PSD-95 mediates its vesiculotublar sort- ing, postsynaptic targeting, and ion channel clusterings. J. Cell Biol., 148, 159–172.
  • Garner, C. C., Nash, J., & Huganir, R. L. (2000). PDZ domains in synapse assembly and signaling. Trends in Cell Biology, 10, 274–280.
  • Gerber, U. (2002). G-protein-coupled receptors, tyrosine kinases and neurotransmission. Neuropharmacology, 42, 587–592.
  • Gilad, G. M., & Gilad, V. H. (1999). Novel polyamine derivatives as neuroprotective agents. J. Pharmacol. Exp. Ther., 291, 39–43.
  • Glazner, G .W., Chan, S. L., Lu, C., & Mattson, M. P. (2000). Caspase-mediated degrada- tion of AMPA receptor subunits: A mechanism for preventing excitotoxicity necrosis and ensuing apoptosis. Journal of Neuroscience, 20, 3641–3649.
  • Griffith, O. W., & Stuehr, D. J. (1995). Nitric oxide synthases: Properties and catalytic mechanism. Annual Review of Neuroscience, 57, 707–736.
  • Gubellini, P., Saulle, E., Centonze, D., Costa, C., Tropepi, D., Bernardi, G., Conquet, F., & Calabresi, P. (2003). Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology, 44(1), 8–16.
  • Gubellini, P., Saulle, E., & Centonze, D. (2001). Selective involvement of mGluR1 recep- tors in corticostriatal LTD. Neuropharmacology, 40, 839–846.
  • Hanley, J. G., Khatri, L., Hanson, P. I., & Ziff, E. B. (2002). NSF ATPase and α-/β- SNAPs disassemble the AMPA receptor-PICK 1 complex. Neuron, 34(1), 53–67.
  • Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., & Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science, 287(5461), 2262–2267.
  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Reviews of Neuroscience, 17, 31–108.
  • Huang, Y. Q., Lu, W. Y., Ah, D. W., Pelkey, K. A., Pitcher, G. M., Lu, Y. M., Aoto, H., Roder, J. C., Sasaki, T., Salter, M. W., & MacDonald, J. F. (2001). Cakβ/Pyk2 Kainase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neu- ron, 29(2), 485–496.
  • Hume, R. I., Dingledine, R., & Heinemann, S. F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science, 253 (5023),1028–1031. Ichise, T., Kano, M., Hashimoto, K., Yanagihara, D., Nakao, K., Shigemoto, R., Katsuki, M., & Aiba, A. (2000). mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science, 288(5472), 1832– 1835.
  • Juilfs, D. M., Soderling S., Burns F., & Beavo, J. A. (1999). Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Reviews of Physiology, Bio- chemistry and Pharmacology, 135, 67–104.
  • Kamboj, S. K., Swanson, G. T., & Cull-Candy, S. G. (1995). Intracellular spermine con- fers rectification on rat calcium-permeable AMPA and kainite receptors. Journal of Physiology, 486(Pt 2), 297–303.
  • Kamphuis, W., & Lopes da Silva, F. H. (1995). Editing status at the Q/R site of glutamate receptor-A, -B, -5 and -6 subunit mRNA in the hippocampal kindling model of epi- lepsy. Brain Research. Molecular Brain Research, 29(l), 35–42.
  • Kamphuis, W., de Leeuw, F. E., & Lopes da Silva, F. H. (1995). Ischaemia does not alter the editing status at the Q/R site of glutamate receptor –A, –B, –5, and –6 subunit mRNA. Neuroreport, 6(8), 1133–1136.
  • Kelland, E. E., & Toms, N. J. (2001). Group I metabotropic glutamate receptors limit AMPA receptor-mediated oligodendrocyte progenitor cell death. European Journal of Pharmacology, 424(3), R3–R4.
  • Kennedy, M. B. (1997). The postsynaptic density at glutamatergic synapses. Trends in Neuroscience, 20(6), 264–268.
  • Klockgether, T., Turshi, L., Honore, T., Zhang, Z. M., Gash, D. M., Kurlan, R., & Greenamyre, J. T. (1991). The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Annals of Neurology, 30(5), 717–723.
  • Koesling, D., & Friebe, A. (1999). Soluble guanylyl cyclase: Structure and regulation. Reviews of Physiology, Biochemistry and Pharmacology, 135, 41–65.
  • Koh, D. S., Burnashev, N., & Jonas, P. (1995). Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. Jour- nal of Physiology, 486(Pt 2), 305–312.
  • Konig, N., Poluch, S., Estabel, J., Durand, M., Drian, M. J., & Exbrayat, J. M. (2001). Synaptic and non-synaptic AMPA receptors permeable to calcium. Japanese Journal of Pharmacology, 86(1), 1–17.
  • Kosinski, C. M., Standaert, D. G., Testa, C. M., Penney, J. B. Jr., & Young, A. B. (1998). Expression of metabotropic glutamate receptor I isoforms in the subtantia nigra pars compacta of the rat. Neuroscience, 86(3), 783–798.
  • Lei, S., Jackson, M. F., Jia, Z., Roder, J., Bai, D., Orser, B. A., & MacDonald, J. F. (2000). Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG. Nature Neuroscience, 3(6), 559–565.
  • Leonard, A. S., Davare, M. A., Home, M. C., Garner, C. C., & Hell, J. W. (1998). SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. Journal of Biological Chemistry, 273(31), 19518–19524.
  • Liao, G. Y., Wagner, D. A., Hsu, M. H., & Leonard, J. P. (2001). Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mo- lecular Pharmacology, 59(5), 960–964.
  • Lipton, S. A., & Rosenberg, P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. New England Journal of Medicine, 330(9), 613–622.
  • Liu, S. Q., & Cull-Candy, S. G. (2000). Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature, 405(6785), 454–458.
  • Lomeli, H., Mosbacher, J., Melcher, T., Hoger, T., Geiger, J. R., Kuner, T., Monyer, H., Higuchi, M., Bach, A., & Seeburg, P. H. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science, 266(5191), 1709–1713.
  • Madden, D. R. (2002a). The inner workings of the AMPA receptors. Current Opinion in Drug Discovery and Development, 5(5), 741–748.
  • Madden, D. R. (2002b). The structure and function of glutamate receptor ion channels. Nature Reviews Neuroscience, 3(2), 9–101.
  • Malenka. R. C., & Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285(5435), 1870–1874.
  • Malinow, R., Mainen, Z. F., & Hayashi, Y. (2000). LTP mechanisms: From silence to four-lane traffic. Current Opinion in Neurobiology, 10(3), 352–357.
  • Man, H. Y., Lin, J. W., Ju, W. H., Ahmadian, G., Liu, L., Becker, L. E., Sheng, M., & Wang, Y. T. (2000). Regulation of AMPA receptor-mediated synaptic transmission by clatherin-dependent receptor internalization. Neuron, 25(3), 649–662.
  • Marino, M. J., Wittmann, M., Bardley, S. R., Hubert, G. W., Smith, Y., & Conn, P. J. (2001). Activation of Group I metabotropic glutamate receptors produces a direct ex- citation and disinhibition of GABA-ergic projection neurons in the substantia nigra pars reticulata. Journal of Neuroscience, 21(18), 7001–7012.
  • Martin, L. J., Blackstone C. D., Levey, A. I., Huganir, R. L., & Price, D. L. (1993). AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience, 53(2), 327–358.
  • Mayer, M. L., Olson, R., & Gouaux, E. (2001). Mechanism for ligand binding to GluR0 ion channels: Crystal structures of the glutamate and serine complexes and a closed apo state. Journal of Molecular Biology, 311(4), 815–836.
  • McMahon, D. G., & Ponomareva, L. V. (1996). Nitric oxide and cGMP modulate retinal glutamate receptors. Journal of Neurophysiology, 76(4), 2307–2315.
  • Moroni, F., Lombardi, G., Thomsen, C., Leonardi, P., Attucci, S., Peruginelli, F., Torregrossa, S. A., Pellegrini-Giampietro, D. E., Luneia, R., & Pellicciari, R. (1997). Pharmacologi- cal characterization of 1-aniinoindan-1‚5-dicarboxyhic acid, a potent rnGluR1 antago- nist. Journal of Pharmacological and Experimental Therapeutics, 281(2), 721–729.
  • Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.
  • Nellgard, B., & Wieloch, T. (1992). Postischemic blockade of AMPA but not NMDA re- ceptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 12(1), 2–11.
  • Nicholls, D. G., & Ward, M. W. (2000). Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts. Trends in Neuroscience, 23(4), 166– 174.
  • Nicoletti, F., Bruno, V., Catania, M. V., Battaglia, G., Copani, A., Barbagallo, U., Cena, V., Sanchez-Prieto, J., Spano, P. F., & Pizzi, M. (1999). Group-I metabotropic glutamate receptors: Hypothesis to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology, 38(10), 1477–1484.
  • Nicoll, R. A., Oliet, S. H., & Malenka, R. C. (1998). NMDA receptor-dependent and metabotropic glutamate receptor-dependent forms of long-term depression coexist in CA1 hippoc- ampal pyramidal cells. Neurobiology of Learning and Memory, 70(1–2), 62–72.
  • Nicotera, P., Zhivotovsky, B., & Orrenius, S. (1994). Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium, 16(4), 279–288.
  • Nishimune, A., Issac, J. T., Molnar, E., Noel, J., Nash, S. R., Tagaya, M., Collingridge, G. L., Nakanishi, S., & Henley, J. M. (1998). NSF binding to GluR2 regulates synaptic transmission. Neuron, 21(1), 87–97.
  • Obrenovitch, T. P., & Urenjak, J. (1997). Altered glutamatergic transmission in neurologi- cal disorders: From high extracellular glutamate to excessive synaptic efficacy. Progress in Neurobiology, 51(1), 39–87.
  • O’Brien, R. J., Xu, D., Petralia, R. S., Steward, O., Huganir, R. L., & Worley, P. (1999). Synaptic clustering of AMPA receptors by the extracellular immediate gene product NARP. Neuron, 23(2), 309–323.
  • Ohmori, J., Sakamoto, S., Kubota, H., Shimizu-Sasamata, M., Okada, M., Kawasaki, S., Hidaka, K., Togami, J., Furuya, T., & Murase, K. (1994). 6-(1H-imidazol-1-yl)-7-nitro- 2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) and related compounds: Struc- ture-activity relationship for the AMPA-type non-NMDA receptor. Journal of Medici- nal Chemistry, 37(4), 467–475.
  • Orlando, L. R., Dunah, A. W., Standaert, D. G., & Young, A. B. (2002). Tyrosine phos- phorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuro- pharmacology, 43(2), 161–173.
  • Ossowska, K., Konieczny, J., Wolfarth, S., Wieronska, J., & Pile, A. (2001). Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian- like effects in rats. Neuropharmacology, 41(4), 413–420.
  • Osten, P., Srivastava, S., Inman, G. J., Vilim, F. S., Khatri, L., Lee, L. M., States, B. A., Einheber, S., Milner, T. A., Hanson, P. I., & Ziff, E. B. (1998). The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs. Neuron, 21(1), 99–110.
  • Otani, S., Auclair, N., Desce, J. M., Roisin, M. P., & Crepel, F. (1999). Dopamine recep- tors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. Journal of Neuroscience, 19(22), 9788–9802.
  • Paschen, W., Schmitt, J., & Uto, A. (1996). RNA editing of glutamate receptor subunits GluR2, GluR5 and GluR6 in transient cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 16(4), 548–556.
  • Passafaro, M., Piech, V., & Sheng, M. (2001). Subunit-specific temporal and spatial pat- terns of AMPA receptor exocytosis in hippocampal neurons. Nature Neuroscience, 4(9), 917–926.
  • Pellegrini-Giampietro D. E. (2003). An activity-dependent spermine-mediated mechanism that modulates glutamate transmission. Trends in Neuroscience, 26(1), 9–11.
  • Pellegrini-Giampietro, D. E., Cozzi, A., Peruginelli, F., Leonardi, P., Meli, E., Pellicciari, R., & Moroni, F. (l999a). 1-Aminoindan-1,5-dicarboxyhic acid and (S)-(+)-2-(3’- carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, re- duce neuronal death in in-vitro and vivo models of cerebral ischaemia. European Journal of Neuroscience, 11(10), 3637–3647.
  • Pellegrini-Giampietro, D. E., Peruginelli, F., Meli, E., Cozzi, A., Albani-Torregrossa, S., Pellicciari, R., & Moroni, F. (1999b). Protection with metabotropic glutamate 1 recep- tor antagonists in models of ischemic neuronal death: Time-course and mechanisms. Neuropharmacology, 38(10), 1607–1619.
  • Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V., & Zukin, R. S. (1997). The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disor- ders. Trends in Neuroscience, 20(10), 464–470.
  • Perez, J. L., Khatri, L., Chang, C., Srivastava, S., Osten, P., & Ziff, E. B. (2001). PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocam- pal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. Journal of Neuroscience, 21(15), 5417–5428.
  • Pfeifer, A., Ruth, P., Dostmann, W., Sausbier, M., Klatt, P., & Hofmann, F. (1999). Struc- ture and function of cGMP-dependent protein kinases. Reviews of Physiology, Bio- chemistry and Pharmacology, 135, 105–149.
  • Pin, J. P., & Duvoisin, R. (1995). The metabotropic glutamate receptors: Structure and functions. Neuropharmacology, 34(1), 1–26.
  • Rang, H. P., Dale, M. M., & Ritter, J. M. (1999). Pharmacology. Edinburgh: Churchill Livingstone.
  • Raymond, L. A., Moshaver, A., Tingley, W. G., & Huganir, R. L. (1996). Glutamate re- ceptor ion channel properties predict vulnerability to cytotoxicity in a transfected non- neuronal cell line. Molecular and Cellular Neurosciences, 7(2), 102–115.
  • Rump, A., Sommer, C., Gass, P., Bele, S., Meissner, D., & Kiessling, M. (1996). Editing of GluR2 RNA in the gerbil hippocampus after global cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 16(6), 1362–1365.
  • Scanziani, M. (2002). Competing on the edge. Trends in Neuroscience, 25(6), 282–283.
  • Seeburg, P. H. (1996). The role of RNA editing in controlling glutamate receptor channel properties. Journal of Neurochemistry, 66(1), 1–5.
  • Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M., & Hirokawa, N. (2002). Glutamate-receptor-interacting protein GRIP1 directly stress kinesin to den- drites. Nature, 417(6884), 83–87.
  • Sheardown, M. J., Suzdak, P. D., & Nordholm, L. (1993). AMPA, but not NMDA, recep- tor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. European Journal of Pharmacology, 236(3), 347–353.
  • Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., & Honore, T. (1990). 2,3- Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science, 247(4942), 571–574.
  • Shen, L., Liang, F., Walensky, L. D., & Huganir, R. L. (2000). Regulation of AMPA re- ceptor GluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal associa- tion. Journal of Neuroscience, 20(21), 7932–7940.
  • Sheng. M., & Lee, S. H. (2001). AMPA receptor trafficking and the control of synaptic transmission. Cell, 105(7), 825–828.
  • Shi, S., Hayashi, Y., Esteban, J. A., & Malinow, R. (2001). Subunit-specific rules govern- ing AMPA receptor trafficking to synapses in hippocampal pyrimidal neurons. Cell, 105(3), 331–343.
  • Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svohoda, K., & Matinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284(5421), 1811–1816.
  • Song, I., & Huganir, R. L. (2002). Regulation of AMPA receptors during synaptic plastic- ity. Trends in Neuroscience, 25(11), 578–588.
  • Song, I., Kamboj, S., Xia, J., Dong, H., Liao, D., & Huganir, R. L. (1998). Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron, 21(2), 393–400.
  • Srivastava, S., Osten, P., Vilim, F. S., Khatri, L., Inman, G., States, B., Daly, C., DeSouza, S., Abagyan, R., Valtschanoff, J. G., Weinberg, R. J., & Ziff, E. B. (1998). Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding pro- tein ABP. Neuron, 21(3), 581–591.
  • Stone, T. W., & Addae, J. I. (2002). The pharmacological manipulation of glutamate re- ceptors and neuroprotection. European Journal of Pharmacology, 447(2–3), 285–296.
  • Strasser, U., Lobner, D., Behrens, M. M., Canzoniero, L. M., & Choi, D. W. (1998). An- tagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. European Journal of Neuroscience, 10(9), 2848–2855.
  • Sun, Y., Olson, R., Horning, M., Armstrong, N., Mayer, M., & Gouaux, E. (2002). Mechanism of glutamate receptor desensitization. Nature, 417(6886), 245–253.
  • Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Reviews of Biochemistry, 53, 749– 790.
  • Topinka, J. R., & Bredt, D. S. (1998). N-terminal palmitoylation of PSD-95 regulates as- sociation with cell membranes and interaction with K+ channel, Kv1.4. Neuron, 20, 125–134.
  • Vornov, J. J., & Coyle, J. T. (1991). Enhancement of NMDA receptor-mediated neurotox- icity in the hippocampal slice by depolarization and ischemia. Brain Research, 555(1), 99–106.
  • Watkins, J. C., Krogsgaard, P., & Honore, T. (1990). Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends in Pharmacological Science, 11(1), 25–33.
  • Wenthold, R. J., Petralia, R. S., Blohos, J. II, & Niedzielski, A. S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. Journal of Neuro- science, 16(6), 1982–1989.
  • Wheal, H., & Thomson, A. (1995). Excitatory amino acids and synaptic function. New York: Academic Press.
  • White, R. E. (1999). Cyclic GMP and ion channel regulation. Advances in Second Mes- senger and Phosphoprotein Research, 33, 251–277.
  • Williams, K. (1997). Modulation and block of ion channels: A new biology of polyamines. Cell Signal, 9(1), 1–13.
  • Xia, J., Zhang, X., Staudinger, J., & Huganir, R. L. (1999). Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICKI. Neuron, 22(1), 179–187.
  • Yokoi, M., Kobayashi, K., Manabe, T., Takahashi, T., Sakaguchi, I., Katsuura, G., Shigemoto, R., Ohishi, H., Nomura, S., Nakamura, K., Nakao, K., Katsuki, M., & Nakanishi, S. (1996). Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Sci- ence, 273(5275), 645–647.
  • Youssef, F., Stone, T. W., & Addae, J. I. (2000). Interaction of glutamate receptor ago- nists with long-term potentiation in the rat hippocampal slice. European Journal of Pharmacology, 398(3), 349–359.
  • Youssef, F., Addae, J. I., McRae, A., & Stone, T. W. (2001). Long-term potentiation pro- tects rat hippocampal slices from the effects of acute hypoxia. Brain Research, 907(1– 2), 144–150.
  • Zhu, J. J., Esteban, J. A., Hayashi, Y., & Malinow, R. (2000). Postnatal synaptic potentia- tion: Delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neuroscience, 3(11), 1098–1106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.