35
Views
4
CrossRef citations to date
0
Altmetric
Research Article

SIMULTANEOUS RECORDING OF EEG AND DIRECT CURRENT (DC) POTENTIAL MAKES IT POSSIBLE TO ASSESS FUNCTIONAL AND METABOLIC STATE OF NERVOUS TISSUE

&
Pages 977-997 | Published online: 07 Jul 2009

References

  • Buchsbaum, M. S., Gillin, J. C., Wu, J., Hazlett, E., Sicotte, N., Dupont, R. M. et al. (1989). Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sciences, 45(15), 1349–1356.
  • Chen, Q., Chopp, M., Bodzin, G., & Chen, H. (1993). Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: Correlation with ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 13(3), 389–394.
  • Daniyarov, S. B., & Vilenskaya, E. M. (1986). The effect of high mountain hypoxia on the human EEG. Journal of Higher Nervous Activity, 30(2), 337–343.
  • Demchenko, I. T. (1976). The methods of investigation of the brain circulation. In B. I. Tkachenko (Ed.), The methods of investigation of the circulation (pp. 104–125). Leningrad: Nauka.
  • Dirlam, G. G. (1994). The reactivity of capillaries and pyramid neurons of brain cortex in rats under conditions of acute reduction of blood stream. The Bulletin of Experimental Biology and Medicine, 5, 558–560. [in Russian]
  • Elbert, T. (1993). Slow cortical potentials reflect the regulation of cortical excitability. In W. C. McCallum & S. H. Curry (Eds.), Slow potential changes in the human brain (pp. 235–251). New York: Plenum Press.
  • Gurvich, A. M., Shikunova, L. G., Novoderzhkina, I. S., & Bulanova, O. N. (1969). The role of posthypoxic changes of metabolism and brain edema in the dynamics of the restoration of functions of the central nervous system following long-term period of the complete cessation of circulation. In G. I. Mchedlishvili (Ed.), The correlation of blood supply with metabolism and function (pp. 233–240). Tbilisi: Metsniereba.
  • Hockaday, I. M., Potts, F., Epstein, E., Bonazzi, A., & Schwab, R. (1965). EEG changes in acute cerebral anoxia from cardiac or respiratory arrest. Electroencephalography and Clinical Neurophysiology, 18(6), 575–586.
  • Ingvar, D. H. (1967). Cerebral metabolism, cerebral blood flow end EEG. Electroencephalography and Clinical Neurophysiology, 25, 102–106.
  • Ingvar, D. H., Sjolund, B., & Arbo, A. (1976). Correlation between dominant EEG fre- quency cerebral oxygen upstake and blood flow. Electroencephalography and Clinical Neurophysiology, 41(3), 268–276.
  • Kauser-Gatchalian, M. C., & Neundörfer, B. (1980). The prognostic value of EEG in ischemic cerebral insults. Electroencephalography and Clinical Neurophysiology, 49(5– 6), 608–617.
  • Kohling, R., Schmidinger, A., Hulsmann, S., Vanhatalo, S., Lucke, A., Straub, H. et al. (1996). Anoxic terminal negative DC-shift in human neocortical slices in vitro. Brain Research, 741(1–2), 174–179.
  • Kosmotiani, P. A., Chikvaidze, V. N., Svanidze, I. K., & Mchedlishvili, G. I. (1969). The effect of ischemia on some metabolic processes in the central nervous system. In G. J. Mchedlishvili (Ed.), The correlation of blood supply with metabolism and function (pp. 201–210). Tbilisi: Metsniereba.
  • Kostopoulos, G. K., & Phillis, J. W. (1977). Purinergic depression of neurons in different areas of the rat brain. Experimental Neurology, 55, 719–724.
  • Li, J., Takeda, Y., & Hirakawa M. (2000). Threshold of ischemic depolarization for neu- ronal injury following four-vessel occlusion in the rat cortex. Journal Neurosurgical. Anesthesiology, 12(3), 247–254.
  • Marczynski, T. J. (1993). Neurochemical interpretation of cortical slow potentials as they relate to cognitive processes and a parsimonious model of mammalian brain. In W. C. McCallum & S. H. Curry (Eds.), Slow potential changes in the human brain (pp. 253– 275). New York: Plenum Press.
  • Marczynski, T. J. (1993). Neurochemical interpretation of cortical slow potentials as they relate to cognitive processes and a parsimonious model of mammalian brain. In W. C. McCallum & S. H. Curry (Eds.), Slow potential changes in the human brain (pp. 253– 275). New York: Plenum Press.
  • Mies, G., Iijima, T., & Hossmann, K. A. (1993). Correlation between peri-infarct DC shifts and ischemic neuronal damage in rat. Neuroreport, 4(6), 709–711.
  • Moskalenko, Yu. E., Demchenko, I. T., Savich, A. A., & Vainshtein, G. B. (1969). On particular relations between local blood stream and some parameters of the functional state of limited parts of the brain. In G. I. Mchedlishvili (Ed.), The correlation of blood supply with metabolism and function (pp. 154–163). Tbilisi: Metsniereba.
  • Pokrovsky, A. V., Yakhno, N. N., Kuntsevich, G. I., Lavrentieva, M. A., & Malkova, V. (1989). The characteristics of intrabrain hypodynamics in occlusing damages of the main brain arteries. The Journal of Neuropathology and Psychiatry, 89(9), 7–11. [in Russian]
  • Rebert, C. S. (1978). Electrogenesis of slow potential changes in the central nervous sys- tem: A summary of issues. In D. Otto (Ed.), Multidisciplinary perspectives in event related brain potential research (pp. 3–11). Cincinnati: U.S. Environmental Protection Agency.
  • Rogers, H., Birch, P. J., & Hayes A. G. (1990). Effects of hypoxia and hypoglycaemia on DC potentials recorded from the gerbil hippocampus in vitro. Naunyn-Schmiedebergs Archives of Pharmacology, 342(5), 547–553.
  • Rusinov, V. S. (1987). The biopotentials of the human brain. Mathematical analysis. Moscow: Meditsina.
  • Sato, H., Austin, G., & Yai, H. (1967). Increase in permeability of the postsynaptic mem- brane to potassium produced by “Nembutal.” Nature, 215(109), 1506–1508.
  • Shefner, S. A., & Chiui, R. H. (1986). Adenosine inhibits locus coereleus neurons: An intracellular study in a rat brain slices preparation. Brain Research, 366(1–2), 364– 1368.
  • Sufianova, G. Z., Usov, L. A., Sufianov, A. A. et al. (2001). The minimal invasive model of the focal brain ischemia in rats. The Experimental and Clinical Pharmacology, 64(4), 63–67. [in Russian]
  • Von der Drift, I. H. A., & Kok, N. K. D. (1973). The value of the EEG for the prognosis of cerebrovascular disease. In J. S. Meyer, H. Lechner, & M. Reivich (Eds.), Cerebral vascular disease (pp. 127–135). Salzburg.
  • Yanvaneva, I. N., & Kuzmina, T. R. (1985). On mechanisms of disturbances of the func- tional state of the central nervous system under oxygen deficiency of the brain. In P. Mowchan (Ed.), The physiological mechanisms of the main nervous processes (Leningrad naturalists association). Leningrad, 75(5), 71–77.
  • Zhirmunskaya, E. A. (1963). The normal electrical activity of the brain in the hypertonic disease and brain insult. Moscow: Nauka.
  • Zhirmunskaya, E. A. (1989). The functional interrelations of the human cerebral hemi- spheres. Leningrad: Nauka.
  • Zhirmunskaya, E. A., Gutman, S. R., Maslov, V. K., Mezentsev, V. V., & Ustinova N. S. (1977). On the recognition of the state of the person under investigation by character- istics of his electroencephalogram. In V. S. Rusinov (Ed.), The functional importance of electrical processes of the brain (pp. 274–282). Moscow: Nauka.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.