27
Views
1
CrossRef citations to date
0
Altmetric
Original

EFFECTS OF AMINO ACID ANTAGONISTS ON SPONTANEOUS DORSAL ROOT ACTIVITY AND EVOKED DORSAL HORN FIELD POTENTIALS IN AN ISOLATED PREPARATION OF RAT SPINAL CORD

, , &
Pages 85-106 | Received 04 Nov 2005, Published online: 07 Jul 2009

REFERENCES

  • Baccei M. L., Fitzgerald M. Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. Journal of Neuroscience 2004; 24: 4749–4757
  • Bagust J. The spinal cord as an in vitro preparation. Electrophysiology: A practical approach (pp. 189–213), D. I. Wallis. Oxford University Press, UK 1993
  • Bagust J., Forsythe I. D., Kerkut G. A. An investigation of the dorsal root reflex using an in vitro preparation of the hamster spinal cord. Brain Research 1985a; 331: 315–325
  • Bagust J., Forsythe I. D., Kerkut G. A. Demonstration of the origin of primary afferent depolarisation in the isolated spinal cord of the hamster. Brain Research 1985b; 341: 385–389
  • Basbaum A. I. Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: Cytochemical evidence for a differential glycinergic control of lamina I and lamina V nociceptive neurons. Journal of Comparative Neurology 1988; 278: 330–336
  • Beall J. E., Applebaum A. E., Foreman R. D., Willis W. D. Spinal cord potentials evoked by cutaneous afferents in the monkey. Journal of Neurophysiology 1977; 40: 199–211
  • Berthele A., Boxall S. J., Urban A., Anneser J. M. H., Zieglgansberger W., Urban L., Tolle T. R. Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. Developmental Brain Research 1999; 112: 39–53
  • Bohlhalter S., Mohler H., Fritschy J. M. Inhibitory neurotransmission in rat spinal cord: Co-localization of glycine-and GABA-A-like receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining. Brain Research 1994; 642: 59–69
  • Bormann J. The “ABC” of GABA receptors. Trends in Pharmacological Sciences 2000; 21: 16–19
  • Boxall S. J., Berthele A., Laurie D. J., Sommer B., Zieglgansberger W., Urban L., Tolle T. R. Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation. Neuroscience 1998; 82: 591–602
  • Campistron G., Buijs R. M., Geffard M. Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization. Brain Research 1986; 376: 400–405
  • Chaplan S. R., Malmberg A. B., Yaksh T. L. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. Journal of Pharmacological and Experimental Therapeutics 1997; 280: 829–838
  • Curtis D. R., Lodge D., Brand S. J. GABA and spinal afferent terminal excitability in the cat. Brain Research 1977; 130: 360–363
  • Curtis D. R., Watkins J. C. The excitation and inhibition of spinal neurones by structurally related amino acids. Journal of Neurochemistry 1960; 6: 117–141
  • Dale N., Roberts A. Dual-component amino acid-mediated synaptic potentials: Excitatory drive for swimming in Xenopus embryos. Journal of Physiology (London) 1985; 363: 35–59
  • Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Research 1982; 235: 378–386
  • De Groat W. C., Lalley P. M., Saum W. R. Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: Antagonism by picrotoxin and bicuculline. Brain Research 1972; 44: 273–277
  • Dickenson A. H., Chapman V., Green G. M. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. General Pharmacology 1997; 28: 633–638
  • Dingledine R., Borges K., Bowie D., Traynelis S. The glutamate receptor ion channels. Pharmacological Reviews 1999; 51: 7–61
  • Dougherty P. M, Palecek J., Paleckova V., Sorkin L. S., Willis W. D. The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. Journal of Neuroscience 1992; 12: 3025–3041
  • Eccles J. C., Kostyuk P. G., Schmidt R. F. Central pathways responsible for depolarization of primary afferent fibres. Journal of Physiology (London) 1962; 161: 237–257
  • Eccles J. C., Schmidt R. F., Willis W. D. Depolarization of the central terminals of cutaneous afferent fibres. Journal of Neurophysiology 1963; 26: 646–661
  • Evans R. H., Long S. K. Primary afferent depolarization in the rat spinal cord is mediated by pathways utilising NMDA and non-NMDA receptors. Neuroscience Letters 1989; 100: 231–236
  • Fagg G. E., Foster A. C. Amino acid neurotransmitters and their pathways in the mammalian CNS. Neuroscience 1983; 9: 701–709
  • Fitzgerald M., Jennings E. The postnatal development of spinal sensory processing. Proceedings of the National Academy of Sciences USA 1999; 96: 7719–7722
  • Fonnum F. Glutamate: A neurotransmitter in mammalian brain. Journal of Neurochemistry 1984; 42: 1–11
  • Forsythe I. D., Barnes-Davies M. Synaptic transmission: Well placed modulators. Current Biology 1997; 7: R362–R365
  • Furuyama T., Kiyama H., Sato K., Park H. T., Maeno H., Tohyama M. Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception. Molecular Brain Research 1993; 18: 141–151
  • Honore T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Neilsen F. E. Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 1988; 241: 701–703
  • Jane D. E., Jones P. L. S. J., Pook P. C. K., Tse H. W., Watkins J. C. Actions of two new antagonists showing selectivity for different subtypes of metabotropic glutamate receptor in the neonatal rat spinal cord. British Journal of Pharmacology 1994; 112: 809–816
  • Jonas P., Bischofberger J., Sandkuhler J. Co-release of two fast neurotransmitters at a central synapse. Science 1998; 281: 419–424
  • Kalb R. G., Lidow M. S., Halsted M. J., Hockfield S. N-Methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn. Proceedings of the National Academy of Sciences USA 1992; 89: 8502–8506
  • Kemp J. A., Foster A. C., Leeson P. D., Priestley T., Tridgett R., Iversen L. L., Woodruff G. N. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proceedings of the National Academy of Sciences USA 1988; 85: 6547–6550
  • Kemp M., Roberts P., Pook P., Jane D., Jones A., Jones P., Sunter D., Udvarhelyi P., Watkins J. C. Antagonism of presynaptically mediated depressant responses and cyclic-AMP coupled metabotropic glutamate receptors. European Journal of Pharmacology 1994; 266: 187–192
  • Kerchner G. A., Wang G.-D., Chang-Shen Q., Huettner J. E., Zhuo M. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: An ionotropic mechanism. Neuron 2001a; 32: 477–488
  • Kerchner G. A., Wilding T. J., Ping L., Zhuo M., Huettner J. E. Presynaptic kainite receptors regulate spinal sensory transmission. Journal of Neuroscience 2001b; 21: 59–66
  • Kleckner N. W., Dingledine R. Selectivity of quinoxalines and kynurenines as antagonists of the glycine site on N-methyl-D-aspartate receptors Molecular Pharmacology 1989; 36: 430–436
  • Lerma J., Paternain A. V., Salvador N., Somohana F., Morales M., Casado M. Excitatory amino acid-activated channels. Ion Channel Pharmacology (pp. 399–421), B. Soria, V. Cena. Oxford University Press, Oxford, UK 1988
  • Levy R. A. The effect of intravenously administered γ-amino-butyric acid on afferent fibre polarization. Brain Research 1975; 92: 21–34
  • Levy R. A., Anderson E. G. The effect of GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Brain Research 1972; 43: 171–180
  • Lin T. B., Fu T. C. Which afferents induce and transmit dorsal root reflex in rats?. Neuroscience Letters 1998; 247: 75–78
  • Lodge D., Monn J. A., Bond A., Woolley M. L. Interaction between metabotropic and ionotropic glutamate receptors on rat spinal cord in vivo and in vitro. Neuropharmacology 1996; 35: A18
  • Long S. K., Smith D. A., Siarey R. J., Evans R. H. Effect of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) on dorsal root-, NMDA-, kainate-and quisqualate-mediated depolarization of rat motoneurones in vitro. British Journal of Pharmacology 1990; 100: 850–854
  • Magoul R., Onteniente B., Geffard M., Calas A. Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience 1987; 20: 1001–1009
  • Maile R. A., Bagust J., Sharma R. P., Walker R. J. The effect of RF-related peptides on dorsal horn field potentials from isolated rat spinal cord. European Journal of Neuroscience 2000a; 12(Suppl. 11, 188.08)427
  • Maile R. A., Bagust J., Sharma R. P., Walker R. J. The effect of RFamide-related peptides and nociceptin on electrical activity recorded from isolated rat spinal cord. Society of Neuroscience Abstracts 2000b; 26: 2188
  • Malcangio M., Bowery N. G. GABA and its receptors in the spinal cord. Trends in Pharmacological Sciences 1996; 17: 457–462
  • Miller K. E., Clements J. R., Larson A. A., Beitz A. J. Organization of glutamate-like immunoreactivity in the rat superficial dorsal horn: Light and electron microscopic observations. Synapse 1988; 2: 28–36
  • Morgan E. The in vitro rat spinal cord: an investigation into the role of excitatory glutamate in nociception using electrophysiological and immunohistochemical techniques. PhD thesis; University of Southampton 2000, Southampton, UK.
  • Nakashini S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992; 258: 359–364
  • Nakanishi S. Metabotropic glutamate receptors: Synaptic transmission, modulation and plasticity. Neuron 1994; 13: 1031–1037
  • Neugebauer V., Lucke T., Schaible H. G. Requirement of metabotropic glutamate receptors for the generation of inflammation-evoked hyperexcitability in rat spinal cord neurones. European Journal of Pharmacology 1994; 6: 1179–1186
  • Noga B. R., Fortier P. A., Kriellaars D. J., Dai X., Detillieux G. R., Jordan L. M. Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region. Journal of Neuroscience 1995; 15: 2203–2217
  • Peng Y. P., Wu J., Willis W. D., Kenshalo D. GABA-A and 5HT-3 receptors are involved in dorsal root reflexes: Possible role in periaqueductal gray descending inhibition. Journal of Neurophysiology 2001; 86: 49–58
  • Pin J. P., Duvoism R. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 1995; 34: 1–26
  • Procter M. J., Houghton A. K., Faber E. S. L., Chizh B. A., Ornstein P. L., Lodge D., Headley P. M. Actions of kainite and AMPA slective glutamate receptor ligands on nociceptive processing in the spinal cord. Neuropharmacology 1998; 37: 1287–1297
  • Reynolds I. J. Arcaine is a competitive antagonist of the polyamine site on the NMDA receptor. European Journal of Pharmacology 1990; 177: 215–216
  • Rudomin P., Dutton H. Effects of muscle and cutaneous afferent nerve volleys on excitability fluctuations of 1 a terminals. Journal of Neurophysiology 1969; 32: 158–169
  • Salt T. E., Hill R. G. Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience 1983; 10: 1083–1103
  • Schaible H.-G., Willis W. D. Responses of spinal cord neurons to stimulation of articular afferent fibres in the cat. Journal of Physiology (London) 1986; 377: 575–593
  • Schoepp D. D., Johnson B. G., Smith E. C. R., McQuaid L. A. Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. Molecular Pharmacology 1990; 338: 222–228
  • Seeburg P. H. Molecular biology of mammalian glutamate receptor channels. Trends in Neuroscience 1993; 16: 359–365
  • Shinozaki H., Ishida M., Shimamoto K., Ohfune Y. Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord. British Journal of Pharmacology 1989; 98: 1213–1224
  • Smith G. B., Olsen R. W. Functional domains of GABA-A receptors. Trends in Pharmacological Sciences 1995; 16: 162–168
  • Thomas N. K., Jane D. E., Tse H. W., Watkins J. C. (S)-α-ethylglutamic acid and (RS)-α-cyclopropyl-4-phosphonophenylglycine as antagonists of L-AP4 and (1 S,3 S)-ACPD-induced depression of monosynaptic excitation of neonatal rat motoneurones. British Journal of Pharmacology 1996; 117: SS P70
  • Todd A. J., Maxwell D. J., Brown A. G. Relationships between hair-follicle afferent axons and glycine-immunoreactivity profiles in cat spinal dorsal horn. Brain Research 1991; 564: 132–137
  • Vidnyanszky Z., Hamori J., Negyessy L., Ruegg D., Knopfel T., Kuhn R., Gorcs T. J. Cellular and subcellular localization of the mGluR5 a metabotropic glutamate receptor in rat spinal cord. Neuroreport 1994; 6: 209–213
  • Watson A. H.D. GABA-and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord. Journal of Comparative Neurology 2003; 464: 497–510
  • Wei H. B., Jakeman L. B., Bonhaus D. W., Hunter J. C. Pharmacological characterization of N-methyl-D-aspartate receptors in spinal cord of rats with chronic peripheral mononeuropathy. Neuropharmacology 1997; 36: 1561–1569
  • Werman R., Davidoff R. A., Aprison M. H. Inhibitory action of glycine on spinal neurons in the cat. Journal of Neurophysiology 1968; 31: 81–95
  • Willis W. D., Jr. Dorsal root potentials and dorsal root reflexes: A double-edged sword. Experimental Brain Research 1999; 124: 395–421
  • Willis W. D., Jr., Coggeshall R. E. Sensory mechanisms of the spinal cord, et al. Plenum Press, New York 1991
  • Wong E. H. F., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Iversen L. L. The anticonvulsant MK-801 is a potent NMDA antagonist. Proceedings of the National Academy of Sciences USA 1986; 83: 7104–7108
  • Xu T.-L., Li J.-S., Jin J.-H., Akaike N. Modulation of the glycine response by calcium permeable AMPA receptors in rat spinal neurones. Journal of Physiology (London) 1999; 514: 701–711
  • Young M. R., Fleetwood-Walker S. M., Dickenson T., Blackburn-Munro G., Sparrow H., Birch P., Bountra C. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Research 1997; 777: 161–169
  • Young M. R., Fleetwood-Walker S. M., Mitchell R., Dickenson T. The involvement of metabotropic glutamate receptors and their intracellular signalling pathways in sustained nociceptive transmission in rat dorsal horn neurones. Neuropharmacology 1995; 34: 1033–1041
  • Yung K. K. Localization of glutamate receptors in dorsal horn of rat spinal cord. Neuroreport 1998; 9: 1639–1644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.