96
Views
3
CrossRef citations to date
0
Altmetric
Original

REELIN IMMUNOREACTIVITY AND MORPHOLOGICAL ANALYSIS OF THE HUMAN VISUAL CORTEX

, , , , &
Pages 25-46 | Received 31 Oct 2005, Published online: 07 Jul 2009

REFERENCES

  • Alcántara S., Ruiz M., D’Arcangelo G., Ezan F., de Lecea L., Curran T., Sotelo C., Soriano E. Regional and cellular patterns of Reelin mRNA expression in the forebrain of the developing and adult mouse. Journal of Neuroscience 1998; 18: 7779–7799
  • Baloyannis S. J. Morphological and Morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer's disease: A Golgi and electron microscopy study. International Journal of Neuroscience 2005; 115: 965–980
  • D’Arcangelo G., Miao G.G., Chen S. C., Soares H.D., Morgan J.I., Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723
  • D’Arcangelo G., Nakajima K., Miyata T., Ogawa M., Mikoshiba K., Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. Journal of Neurosciences 1997; 17: 23–31
  • de Bergeyck V., Naerhuyzen B., Goffinet A.M., Lambert de Rouvroit C. Panel of monoclonal antibodies against Reelin, the extracellular matrix protein defective in reeler mutant mice. Journal of Neuroscience Methods 1998; 82: 17–24
  • DeFelipe J., Hendry S. H., Hashikawa T., Molinari M., Jones E.G. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 1990; 37: 655–673
  • Del Rio J. A., Heimrich B., Borrell V., Forster E., Drakew A., Alcántara S., Nakajima K., Miyata T., Ogawa M., Mikoshiba K., Derer P., Frotscher M., Soriano E. A role for Cajal–Retzius cells and Reelin in the development of hippocampal connections. Nature 1997; 38: 70–74
  • Derer P. Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosciece Letters 1985; 54: 1–6
  • Derer P., Derer M. Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 1990; 36: 839–856
  • Derer P., Derer M., Goffinet A. Axonal secretion of Reelin by Cajal–Retzius cells: Evidence from comparison of normal and Reln (Orl) mutant mice. Journal of Comparative Neurology 2001; 440: 136–143
  • Goffinet A. M. Events governing organization of postmigratory neurons: Studies on brain development in normal and reeler mice. Brain Research Reviews 1984; 7: 261–296
  • Goffinet A.M. Unscrambling a disabled brain. Nature 1997; 389: 668–669
  • Guidotti A., Auta J., Davis J. M., Gerevini V. D., Dwivedi Y., Grayson D. R., Impagnatiello F., Pandey G., Pesold C., Sharma R., Uzunov D., Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A post-mortem brain study. Archives of General Psychiatry 2000; 57: 1061–1069
  • Hack I., Bancila M., Loulier K., Carroll P., Cremer H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neuroscience 2002; 5: 939–945
  • Hong S. E., Shugart Y. Y., Huang D. T., Shahwan S. A., Grant P. E., Hourihane J. O., Martin N. D., Walsh C. A. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genetics 2000; 26: 93–96
  • Howell B. W., Soriano P., Cooper A. J. Neuronal position in the developing brain is regulated by mouse diasabled-1. Nature 1997; 389: 733–737
  • Impagnatiello F., Guidotti A. R., Pesold C., Dwivedi Y., Caruncho H., Pisu M. G., Uzunov D. P., Smalheiser N. R., Davis J. M., Pandey G. N., Pappas G. D., Tueting P., Sharma R. P., Costa E. A decrease of Reelin expression as a putative vulnerability factor in schizophrenia. Proceedings of National Academy of Science USA 1998; 95: 15718–15723
  • Kisvarday F. Z., Gulyas A., Beroukas D., North J. B., Chubb I. W., Somogyi P. Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 1990; 113: 793–812
  • Lambert de Rouvroit C., de Bergeyck V., Cortvrindt C., Bar I., Eeckhout Y., Goffinet A. M. Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. Experimental Neurology 1999a; 156: 214–217
  • Lambert de Rouvroit C., Bernier B., de Bergeyck V., Goffinet A. M. Evolutionarily conserved, alternative splicing of reelin during brain development. Experimental Neurology 1999b; 156: 229–238
  • Lund J. S. Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). Journal of Comparative Neurology 1973; 147: 455–496
  • Lund J. S. Local circuit neurons of macaque moniey striate cortex: I. Neurons of laminae 4C and 5A. Journal of Comparative Neurology 1987; 257: 60–92
  • Lund J. S., Hawken M. J., Parker A. J. Local circuit neurons of macaque moniey striate cortex: II. Neurons of laminae 5B and 6. Journal of Comparative Neurology 1988; 276: 1–29
  • Lund J. S., Yoshioka T. Local circuit neurons of macaque moniey striate cortex: II. Neurons of laminae 4B, 4 A and 3B. Journal of Comparative Neurology 1991; 311: 234–258
  • Marín-Padilla M. Three-dimensional structural organization of layer I of the human cerebral cortex: A Golgi study. Journal of Comparative Neurology 1990; 299: 89–105
  • Marín-Padilla M. Cajal-Retzius cells and the development of the neocortex. Trends in Neuroscience 1998; 21: 64–71
  • Martínez-Cerdeño V., Galazo M. G., Cavada C., Clascá F. Reelin immunoreactivity in the adult primate brain: Intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cerebral Cortex 2002; 12: 1298–1311
  • Miyata T., Nakajima K., Aruga J., Takahashi S., Ikenaka K., Mikoshiba K., Ogawa M. Distribution of a reeler gene-related antigen in a developing cerebellum: An immunohistochemical study with an allogenic antibody CR-50 in normal and reeler mice. Journal of Comparative Neurology 1996; 372: 215–228
  • Ogawa M., Miyata T., Nakajima K., Yagyu K., Seike M., Ikenaka K., Yamamoto H., Mikoshiba K. The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 1995; 14: 899–912
  • Riedel A., Mietinen R., Stieler J., Mikkonen M., Alafuzoff I., Soininen H., Arendt T. Reelin-immunoreactive Cajal-Retzius cells: The entorhinal cortex in normal aging and Alzheimer's disease. Acta Neuropathologica 2003; 106: 291–302
  • Roberts R. C., Xu L., Roche J. K., Kirkpatrick B. Ultrastructural localization of Reelin in post-mortem human brain. Journal of Comparative Neurology 2005; 482: 294–308
  • Rodríguez M. A., Pesold C., Liu W. S., Kriho V., Guidotti A., Pappas G. D., Costa E. Colocalization of integrin receptors and Reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proceedings of National Academy of Science USA 2000; 97: 3550–3555
  • Sheldon M., Rice S.D., D’Arcangello G., Yoneshima H., Nakajima K., Mikoshiba K., Howell B., Cooper A. J., Goldowitz D., Curran T. Scrambler and Yotary disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 1997; 389: 730–733
  • Zecevic N., Rakic P. Development of layer I neurons in the primate cerebral cortex. Journal of Neuroscience 2001; 21: 5607–5619

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.