36
Views
1
CrossRef citations to date
0
Altmetric
Original

ALTERATIONS IN THE THYMOPOIESIS IN EXPERIMENTAL AUTOIMMUNE MYASTHENIA GRAVIS

, , &
Pages 461-477 | Received 20 May 2004, Published online: 07 Jul 2009

REFERENCES

  • Bach J. F. Current concepts of autoimmunity. Review of Neurology (Paris) 2002; 158(10)881–886
  • Bendelac A., Rivera M. N., Park S.-H., Roark J. H. Mouse CD1-specific NK1 T cells: Development, specificity and function. Annual Review of Immunology 1997; 15: 535–562, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Budd R. C., Mixter P. F. The origin of CD4–CD8-TCRab+ thymocytes: A model based on T-cell receptor avidity. Immunology Today 1995; 16(9)428–431, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Casley-Smith J. R. Expressing stereological results "per cm3" is not enough. Journal of Pathology 1988; 156(3)263–265, [PUBMED], [INFOTRIEVE]
  • Chan S. H., Cosgrove D., Waltzinger C., Benoist C., Mathis D. Another view of the selective model of thymocyte selection. Cell 1993; 73(2)225–236, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Damjanović M., Vidić-Danković B., Kosec D., Isaković K. Thymus changes in experimentally induced myasthenia gravis. Autoimmunity 1993; 15(3)201–207, [CSA]
  • Drachman D. B., Adams R. N., Stanley E. F., Pestronk A. Mechanisms of acetylcholine receptor loss in myasthenia gravis. Journal of Neurology Neurosurgery and Psychiatry 1980; 43(7)601–610
  • Durelli L., Ferrio M. F., Massazza U., Cavallo R., Ferri R., Bergamini L., Maggi G., Engel A. G., Lambert E. H., Howard F. M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: Ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clinic Proceedings 1977; 52(5)267–280
  • Eymard B., Berrih-Aknin S. Role of the thymus in the physiopathology of myasthenia. Revue Neurologique 1995; 151(1)6–15, [PUBMED], [INFOTRIEVE], [CSA]
  • Fridkis-Hareli M., Eren R., Sharp A., Abel L., Kukulansky T., Globerson A. MHC recognition in colonization of the thymus by bone marrow cells. Cellular Immunology 1993; 149(1)91–98, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Fujii N., Itoyama Y., Goto I. Increase in differentiated type of T lineage cells in the myasthenic thymus: Two-color fluorocytometric analysis. Annals of Neurology 1990; 27(6)642–646, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ichikawa Y., Shimizu H., Yoshida M., Arimori S. Two-color flow cytometric analysis of thymic lymphocytes from patients with myashenia gravis and/or thymoma. Clinical Immunology and Immunopathology 1992; 62(1)91–96, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Jameson S. C., Hogquist K. A., Bevan M. J. Positive selection of thymocytes. Annual Review of Immunology 1995; 13: 93–126, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kendall M. D., Al-Shawaf A. A. Innervation of the rat thymus gland. Brain, Behaviour and Immunity 1991; 5(1)9–28, [CROSSREF], [CSA]
  • Krolick K., Urso O. Analysis of helper-T-cell function by acetylcholine receptor-reactive cell lines of defined AChR-subunit specificity. Cellular Immunology 1987; 105(1)75–85, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lennon V. A., Lindstrom J. M., Seybold M. E. Experimental autoimmune myasthenia gravis: Cellular and humoral immune responses. Annals of the New York Academy of Sciences 1976; 274: 283–299, [PUBMED], [INFOTRIEVE]
  • Lind E. F., Prockop S. E., Porritt H. E., Petrie H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments support-ing defined stages of early lymphoid development. Journal of Experimental Medicine 2001; 194(2)127–134, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lindstrom J. M., Lennon V. A., Seybold M. E., Whittingham S. Experimental autoimmune myasthenia gravis and myasthenia gravis: Biochemical and immunochemical aspects. Annals of the New York Academy of Sciences 1976; 274: 254–274, [PUBMED], [INFOTRIEVE]
  • MacDonald H. R., Radke F., Wilson A. T cell specification and alfa-beta/gamma-delta lineage commitment. Current Opinion in Immunology 2001; 13(2)219–224, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Machi M., Itoyama Y., Goto I., Kuroiwa Y. Surface phenotypes of lymphoid cells altered in the human myasthenic thymus. Neurology 1988; 38(4)592–596, [PUBMED], [INFOTRIEVE]
  • Mehr R., Perelson A. S., Fridkis-Hareli M., Globerson A. Regulatory feedback pathways in the thymus. Immunology Today 1997; 18(12)581–585, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Moulian N., Wakkach A., Guyon T., Poea S., Aissaoui A., Levasseur P, Cohen-Kaminsky S., Berrih-Aknin S. Respective role of thymus and muscle in autoimmune myasthenia gravis. Annals of the New York Academy of Sciences 1998; 841: 397–406, [PUBMED], [INFOTRIEVE], [CSA]
  • PejcÚić-Karapetrović B., Kosec D., Leposavić G. Differential effects of male and female gonadal hormones on the intrathymic T cell maturation. Developmental Immunology 2001; 8(3–4)305–317, [CSA]
  • Petrie H. T., Hugo P., Scollay R., Shortman K. Lineage relationships and developmental kinetics of immature thymocytes: CD3, CD4 and CD8 acquisition in vivo and in vitro. The Journal of Experimental Medicine 1990; 172(6)1583–1588, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Poussin M. A., Christadoss P. Cellular mechanisms of target antigen attack in experimental autoimmune myasthenia gravis. Myasthenia Gravis: Disease mechanisms and immunointervention, P. Christados. Narosa Publishing House, New Delhi 2000; pp. 59–72
  • Reinhard C., Melms A. Normalization of elevated CD4–/CD8– (double-negative) T cells after thymectomy parallels clinical remission in myasthenia gravis associated with thymic hyperplasia but not thymoma. Annual Neurology 2000; 48(4)603–608, [CROSSREF]
  • Rodewald H.-R., Fehling H. J. Molecular and cellular events in early thymocyte development. Advances in Immunology 1998; 69: 1–112, [PUBMED], [INFOTRIEVE], [CSA]
  • Roncarolo M. G., Levings M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Current Opinion in Immunology 2000; 12(6)676–683, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Scollay R., Godfrey D. I. Thymic emigration: Conveyor belts or lucky dips?. Immunology Today 1995; 16(6)268–273, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Seddon B., Mason D. The third function of the thymus. . Immunology Today 2000; 21(2)95–99, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Shelton G. D. Acquired myasthenia gravis: What we have learned from experimental and spontaneous animal models. Veterinary Immunology and Immuno-pathoogy 1999; 69(2)239–249, [CROSSREF], [CSA]
  • Shenoy M., Kaul R., Goluszko E., David C., Christados P. Effect of MHC class I and CD8 cell deficiency on experimental autoimmune myasthenia gravis pathogenesis. The Journal of Immunology 1994; 153(11)5330–5335, [PUBMED], [INFOTRIEVE]
  • Shortman K., Egerton M., Spangrude G. J., Scollay R. The generation and fate of thymocytes. Seminars in Immunology 1990; 2(1)3–12, [PUBMED], [INFOTRIEVE]
  • Taams L. S., Wauben H. M. Anergic T cells as active regulators of immune response. Human Immunology 2000; 61(7)633–639, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Truffault F., Cohen-Kaminsky S., Khalil I., Levasseur P., Berrih-Aknin S. Altered intrathymic T-cell repertoire in human myasthenia gravis. Annals of Neurology 1997; 41(6)731–741, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Vidić-Danković B., Kosec D., Damjanović M., Apostolski S., Isaković K., Bartlett R. R. Leflunomide prevents the development of experimentally induced myasthenia gravis. International Journal of Immunopharmacology 1995; 17(4)273–281, [CROSSREF], [CSA]
  • Vincent A., Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. Journal of Neurology, Neurosurgery and Psychiatry 1985; 48(12)1246–1252
  • Wang R., Wang-Zhu Y., Grey H. Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proceedings of the National Academy of Sciences of the United States of America 2002; 99(4)2181–2186, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Weibel E. R. Stereological methods. Practical methods for biological morphometry. Academic Press, London 1979; Vol. 1
  • Westermann J., Smith T., Peters U., Tschernig T., Pabst R., Steinhoff G., Sparshott S. M., Bell E. B. Both activated and non-activated leucocytes from the periphery continuously enter the thymic medulla of adult rats: phenotypes, source and magnitude of traffic. European Journal of Immunology 1996; 26(8)1866–1874, [PUBMED], [INFOTRIEVE], [CSA]
  • Zhang G. X., Ma C. G., Link H., Olsson T. Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. European Journal of Immunology 1995; 25(5)1191–1198, [PUBMED], [INFOTRIEVE], [CSA]
  • Zhang G.-X., Xiao B.-G., Bakhiet M., van der Meide P., Wigzell H., Link H., Olsson T. Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis. The Journal of Experimental Medicine 1996; 184(2)349–356, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zhang G.-X., Xiao B.-G., Yu L.-Y., van der Meide P. H., Link H. Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR. Journal of Neuroimmunology 2001; 113(1)10–18, [PUBMED], [INFOTRIEVE], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.