1,032
Views
62
CrossRef citations to date
0
Altmetric
Original

METHYLPHENIDATE (RITALIN): BEHAVIORAL STUDIES IN THE RAT

, , &
Pages 757-794 | Published online: 07 Jul 2009

REFERENCES

  • Accardo P., Blondis T. A. What's all the fuss about?. Ritalin? J. Pediatr 2001; 138: 6–9
  • Achat-Mendes C., Anderson K. L., Itzhak Y. Methylphenidate and MDMA adolescent exposure in mice: long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood. Neuropharmacology 2003; 45: 106–115
  • Adriani W., Chiarotti F., Laviola G. Elevated novelty seeking and peculiar d-amphetamine sensitization in periadolescent mice compared with adult mice. Behav. Neurosci. 1998; 112: 1152–1156
  • Aizenstein M. L., Segal D. S., Kuczenski R. Repeated amphetamine and fencamfamine: sensitization and reciprocal cross-sensitization. Neuropsycho-pharmacology 1990; 3: 283–290
  • Andersen S. L., Teicher M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 2000; 24: 137–141
  • Andersen S. L., Arvanitogiannis S. A., Pliakas A. M., LeBlance C., Carlezon W. A. Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat. Neurosci. 2002; 51: 13–14
  • Appenrodt E., Bojanowska E., Janus J., Stempniak B., Guzek J. W. Effects of methylphenidate on oxytocin and vasopressin levels in pinealectomized rats during light-dark cycle. Pharmacol Biochem Behav. 1997; 58: 415–419
  • Augustyniak P. N., Kourrich S., Rezazadeh S. M., Stewart J., Arvanitogiannis A. Differential behavioral and neurochemical effects of cocaine alter early exposure to methylphenidate in an animal model of ADHD. Behav. Brain Res. 2006; 167: 379–382
  • Archer T. Neurotoxin-induced cognitive and motor activity modification: a catecholamine connection. Attention deficit disorder: clinical and basic research., T. Sagvolden, T. Archer. Hillsdale Lawrence Erlbaum Pub. 1989; 287–322
  • Barret S. P., Darredeau C., Bordy L. E., Pihl R. O. Characteristics of methylphenidate misuse in an university student sample. Can. J. Psychiatry 2005; 50: 457–461
  • Berridge K. C., Robinson T. E. The mind of an addicted brain: neural sensitization of wanting versus liking. Current Direct Psychological Sci. 1995; 4: 71–76
  • Bolanos C. A., Glatt S. J., Jackson D. Subsensitivity to dopaminergic drugs in periadolescent rats: a behavioral and neurochemical analysis. Dev. Brain Res. 1998; 111: 25–33
  • Bowman B. P., Kuhn C. M. Age-related differences in the chronic and acute response to cocaine in the rat. Dev. Psychobiol. 1996; 29: 597–611
  • Brandon C. L., Marinelli M., Baker L. K., White F. J. Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacol. 2001; 25: 651–661
  • Browne R. G., Segal D. S. Metabolic and experimental factors in the behavioral response to repeated amphetamine. Pharmacol Biochem Behav. 1977; 5: 545–552
  • Butcher S. P., Liptrot J., Aburthnott G. W. Characterization of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neurosci. Lett. 1991; 122: 245–248
  • Byrnes J. J., Pritchard G. A., Koff J. M., Miller L. G. Prenatal cocaine exposure: Decreased sensitization to cocaine and decreased striatal dopamine transporter binding in offspring. Neuropharmacol. 1993; 32: 721–723
  • Cadoni C., Marcello S., Di Chiara G. Psychostimulant sensitization: Differential changes in accumbal shell and core dopamine. Eur. J. Pharmacol. 2000; 388: 69–76
  • Camp D. M., Robinson T. E. Susceptibility to sensitization: I. Sex differences in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav. Brain Res. 1988; 30: 55–68
  • Chalman T. D., Lipsky J. J. Methylphenidate: Its pharmacology and uses. Mayo Cli. Proc. 2000; 75: 711–721
  • Cirulli F., Laviola G. Paradoxical effects of D-amphetamine in infant and adolescent mice: role of gender and environmental risk factors. Neurosci. Biobehav. Rev. 2000; 24: 73–84
  • Clarke P. B., Fibiger H. C. Apparent absence of nicotine-induced conditioned place preference in rats. Psychopharmacology (Berl) 1987; 92: 84–88
  • Clure C., Brandy K. T., Saladin M. E., Johnson D., Waid R. Attention deficit/hyperactivity disorder and substance use: symptom pattern and drug choice. Am. J. Drug Alcohol Abuse 1999; 25: 441–448
  • Collins R. J., Weeks J. R., Cooper M. M., Good P. I., Russell R. R. Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology (Berl) 1984; 82: 6–13
  • Cone E. J. Pharmacokinetics and pharmacodynamics of cocaine. J. Anal. Toxicol. 1995; 19: 459–478
  • Crawford C. A., McDougall S. A., Meier T. L., Collins R. L., Watson J. B. Repeated methylphenidate treatment induces behavioral sensitization and decreases protein kinase A and dopamine-stimulated adenylyl cyclase activity in the dorsal striatum. Psychopharmacology (Berl) 1998; 136: 34–43
  • Crutchley A., Temlett J. A. Methylphenidate (Ritalin) use and abuse. S. Afr. Med. J. 1999; 89: 1076–1079
  • Dell’Anna M. E., Luthman J., Landqvist E., Olson L. Development of monoamine systems after neonatal anoxia in rats. Brain Res. Bull. 1993; 32: 159–170
  • Deutsch H. M., Schweri M. M. Can stimulant binding and dopamine transport be differentiated? Studies with GBR 12783 derivatives. Life Sci. 1994; 55: 115–120
  • Diaz-Granados J. L., Greene P. L., Ansel A. Selective activity enhancement and persistence in weanling rats after hippocampal x-irradiation in infancy: possible relevance for ADHD. Behav. Neural Biol. 1994; 61: 251–259
  • Ding Y. S., Fowler J. S., Volkow N. D., Gatley S. J., Logan J. Pharmacokinetics and in vivo specificity of 011 C0dl-threo-methylphenidate for the presynaptic dopaminergic neuron. Synapse 1994; 18: 152–160
  • Druhan J. P., Jakob A., Stewart J. The development of behavioral sensitization to apomorphine in blocked by MK-801. Eur. J. of Pharmacol. 1993; 243: 73–77
  • Eckermann K., Beasley A., Yang P., Gaytan O., Swann A., et al. Methylphenidate sensitization is modulated by Valproate. Life Sci. 2001; 69: 47–57
  • Eichlseder W. Ten years of experience with 1.000 hyperactive children in a private practice. Pediatr. 1985; 76: 176–184
  • Feldpausch D. L., Needham L. M., Stone M.P., Althaus J. S., Yamamoto B. K., et al. The role of D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J. Pharmacol. Exp. Ther. 1998; 286: 497–508
  • Fregly M. J., Black B. A. Effect of Methylphenidate on Spontaneous Activity, Food, Intake, and Cold Tolerance of Propylthiouracil-Treated Rats. Canad. J. Physiol. Pharmacol. 1964; 42: 415–419
  • Fujiwara Y., Kazahaya Y., Nakashima M., Sato M., Otsuki S. Behavioral sensitization to methamphetamine in the rat: an ontogenic study. Psychopharmacol. 1987; 91: 316–319
  • Fukui R., Svenningsson P., Matsuishi T., Higashi H., Nairn A. C., et al. Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J. Neurochem. 2003; 87: 1391–1401
  • Gardner E. L. Brain reward mechanisms. Williams and Wilkins Substance Abuse: A Comprehensive Textbook, J.H. Lowinson, R.B. Millman, J.G. Langrod, Baltimore 1997; 51–58
  • Garland E. J. Intranasal abuse of prescribed methylphenidate. J. Am. Acad. Child Adolesc. Psychaitry 1998; 37: 573–574
  • Gatley S. J., Volkow N. D., Gifford A. N., Fowler J. S., Dewery S. L., et al. Dopamine-transporter occupancy after intravenous doses of cocaine and methylphenidate in mice and humans. Psychopharmacology 1999; 146: 93–100
  • Gatley S. J., Meehan S. M., Chen R., Pan D. F., Schechter M. D., et al. Place preference and microdialysis studies with two derivatives of methylphenidate. Life Sci. 1996; 58: PL345–PL352
  • Gaytan O., Al-Rahim S., Swann A., Dafny N. Sensitization to locomotor effects of methylphenidate in the rat. Life Sci. 1997a; 61: PL101–PL107
  • Gaytan O., Ghelani D, Martin S., Swann A., Dafny N. Dose response characteristics of methylphenidate on different indices of rats’ locomotor activity at the beginning of the dark cycle. Brain Res. 1996; 727: 13–21
  • Gaytan O., Ghelani D., Martin S., Swann A., Dafny N. Methylphenidate: diurnal effects on locomotor and stereotypic behavior in the rat. Brain Res. 1997b; 777: 1–12
  • Gaytan O., Lewis C., Swann A., Dafny N. Diurnal differences in amphetamine sensitization. Eur. J. Pharmacol. 1999; 374: 1–9
  • Gaytan O., Nason R., Alagugurusamy R., Swann A., Dafny N. MK-801 blocks the development of sensitization to the locomotor effects of methylphenidate. Brain Res Bull. 2000a; 51: 485–492
  • Gaytan O., Sripada S., Swann A., Dafny N. Blockade of sensitization to methylphenidate by MK-801: partial dissociation from motor effects. Neuropharmacology 2001; 40: 298–309
  • Gaytan O., Swann A., Dafny N. Diurnal differences in rat's motor resonse to amphetamine. Eur. J. Pharmacol. 1998a; 345: 119–128
  • Gaytan O., Swann A., Dafny N. Time-dependent differences in the rat's motor response to amphetamine. Pharmacol. Biochem. Behav. 1998b; 59: 459–467
  • Gaytan O., Swann A. C., Dafny N. Disruption of sensitization to methylphenidate by a single administration of MK-801. Life Sci. 2002; 70: 2271–2285
  • Gaytan O., Yang P., Swann A., Dafny N. Diurnal differences in sensitization to methylphenidate. Brain Res. 2000b; 864: 24–39
  • Gerasimov M. R., Franceschi M., Volkow N. D., Gifford A., Gatley S. J. Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study. J. Pharmacol. Exp. Ther. 2000; 295: 51–57
  • Glick S. D., Hinds P. A. Sex differences in sensitization to cocaine-induced rotation. Eur. J. Pharmacol. 1984; 99: 119–121
  • Goldman L. S., Genel M., Bezman R. J., Slanetz P. J. Diagnosis and treatment of attention deficit hyperactivity disorder in children and adolescents. JAMA 1998; 279: 1100–1107
  • Goudie A. J., Emmett-Oglesby M. W. Psychoactive drugs: tolerance and sensitization. Humana Press, Clifton New Jersey 1989
  • Grund T., Lehmann K., Bock N., Rothenberger A., Teuchert-Noodt G. Influence of methylphenidate on brain development—an update of recent animal experiments. Behav. Brain Funct. 2006; 10: 2–12
  • Hoffman B. B., Lefkowitz R. J. Catecholamines and sympathomimetic drugs, and adrenergic receptor antagonists. Goodman and Gilman the Pharmacological Basis of Therapeutics 9th, J. G. Hardman, L. E. Limbird, R. W. Ruddon, A. D. Gilman. Pergamon, New York 1996; 199–250
  • Honma S., Honma K. Locomotor rhythms induced by methylphenidate in suprachiasmatic nuclei-lesioned rats. Neurosci Lett. 1992; 137: 24–28
  • Horger B. A., Giles M. K., Schenk S. Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacological 1992; 107: 271–276
  • Hovens J. G., Cantwell D. P., Kiriakos R. Psychiatric comorbidity in hospitalized adolescent substance abusers. J. Am. Acad. Child Adolesc. Psychiatry 1994; 33: 476–483
  • Hurd Y. L., Ungerstedt U. In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. Eur. J. Pharmacol. 1989; 166: 251–260
  • Huttenlocher P. R. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res. 1979; 163: 195–205
  • Insel T. R., Charney D. S. Research on major depression strategies and priorities. JAMA 2003; 289: 3167–3168
  • Isaac W., Kallman W. M. Stimulants and lesions of the substantia nigra and red nucleus. Physiol Behav. 1975; 5: 471–474
  • Izenwasser S., Coy A. E., Ladenheim B., Loeloff R. J., Cadet J. L., et al. Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine. Eur. J. Pharmacol. 1999; 373: 187–193
  • Jaffe S. L. Intranasal abuse of prescribed methylphenidate by an alcohol and drug abusing adolescent with ADHD. J. Am. Acad. Child Adolesc. Psychiatry 1991; 30: 773–775
  • Jerziorski M., White F., Wolf M. MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse 1994; 16: 137–147
  • Kalivas P. W., Churchill L., Klitenick M. A. The circuitry mediating the translation of motivational stimuli into adaptive motor responses. Limbic Motor Circuits and Neuropsychiatry, P. W. Kalivas, C. D. Barnes. CRC Press, Boca Raton 1993; 237–287
  • Kalivas P. W., Duffy P., DuMars L. A., Skinner C. Behavioral and neurochemical effects of acute and daily cocaine administration in rats. J. Pharmacol. Exp. Ther. 1998; 245: 485–492
  • Kalivas P. W., Pierce R. C., Cornish J., Sorg B. A. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 1998; 12: 49–53
  • Kalivas P. W., Stewart J. Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 1991; 16: 223–244
  • Kallman W. M., Isaac W. The effects of age and illumination on the dose-response curves for three stimulants. Psychopharmacologia 1975; 40: 313–318
  • Kankaanpaa A., Meririnne E., Seppala T. 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacology (Berl). 2000; 159: 341–350
  • Karler R., Calder L. D., Chaudhry I. A., Turkanis S. A. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci. 1989; 45: 599–606
  • Kollins S. H., MacDonald E. K., Rush C. R. Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol. Biochem. Behav. 2001; 68: 611–627
  • Komater V. A., Browman K. E., Curzon P., Hancock A. A., Decker M. W., et al. H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization. Psychopharmacology (Berl). 2003; 1674: 363–372
  • Kuczenski R., Segal D. S. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 1997; 685: 2032–2037
  • Kuczenski R., Segal S. D. Sensitization of amphetamine-induced stereotyped behaviors during the acute response. J. Pharmacol. Exp. Therap. 1999; 288: 699–709
  • Kuczenski R., Segal D. S. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J. Pharmacol. Exp. Ther. 2001; 296: 876–883
  • Kuczenski R., Segal D. S. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J. Neurosci. 2002; 22: 7264–7271
  • Lambert N. M., Hartsongh C. S. Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J. Learn. Disabil. 1998; 31: 533–544
  • Landrup P., Wallace L. J. Sensitization elicited by directly and indirectly acting dopaminergic agonists: Comparison using neural network analysis. Psychopharmacologia 1999; 141: 169–174
  • Laviola G., Wood R. D., Kuhn C., Francis R., Spear L. P. Cocaine sensitization in periadolescent and adult rats. J. Pharmacol. Exp. Ther. 1995; 275: 345–357
  • LeMoal M., Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 1991; 71: 155–234
  • Lett B. T. Repeated exposures intensity rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacol. (Berl.) 1989; 98: 357–362
  • Li Y., Wolf M. E. Ibotenic acid lesions of the prefrontal cortex do not prevent the expression of behavioral sensitization to amphetamine. Behav. Brain Res. 1999; 84: 285–289
  • Lucas A. R., Weiss M. Methylphenidate hallucinosis. JAMA 1971; 217: 1079–1081
  • Mao L., Wang J. Q. Differentially altered mGluR1 and mGluR5 mRNA expression in rat caudate nucleus and nucleus accumbens in the development and expression of behavioral sensitization to repeated amphetamine administration. Synapse 2001; 41: 230–240
  • Martin-Iverson M. T., Ortmann R., Fibiger C. H. Place preference conditioning with methylphenidate and nomifensine. Brain Res. 1985; 332: 59–67
  • Massello W., Carpenter D. A. A fatality due to the intranasal abuse of methylphenidate (Ritalin). J. Forensic Sci. 1999; 44: 220–221
  • McCormick T. C., McNeel T. W. Acute psychosis and Ritalin abuse. Tex. State J. Med. 1963; 59: 99–100
  • McClung C. A., Nestler E. J. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat. Neurosci. 2003; 6: 1208–1215
  • McNamara C. G., Davidson E. S., Schenk S. A comparison of the motor-activating effects of acute and chronic exposure to amphetamine and methylphenidate. Pharmacol. Biochem. Behav 1993; 45: 729–732
  • Melnick S. M., Dow-Edwards D. L. Differential behavioral responses to chronic amphetamine in adult male and female rats exposed to postnatal cocaine treatment. Pharmacol. Biochem. Behav. 2001; 69: 219–224
  • Methylphenidate Review. Eight Factor Analysis 1995, Washington DC, Drug and Chemical Evaluation Section, Office of Diversion Control, Drug Enforcement Administration
  • Meririnne E., Kankaanpaa A., Seppala T. Rewarding properties of methylphenidate: sensitization by prior exposure to the drug and effects of dopamine D1- and D2-receptor antagonists. J. Pharmacol. Exp. Ther. 2001; 298: 539–550
  • Meyers C. A., Weitzner M. A., Valentine A. D., Levin V. A. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J. Clin. Oncol. 1998; 16: 2522–2527
  • Mithani S., Martin-Iverson M. T., Phillips A. G., Fibiger H. C. The effects of haloperidol on amphetamine- and methylphenidate-induced conditioned place preferences and locomotor activity. Psychopharmacology (Berl). 1986; 90: 247–252
  • Mogenson G. J., Brudzynski S. M., Wu M., Yang C. R., Yim C. Y. From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-pedunculopontine nucleus circuitries involved in limbic-motor integration. Limbic Motor Circuits and Neuropsychiatry, P. W. Kalivas, C.D. Barnes. CRC Press, Boca Raton 1980; 193–236
  • Morton W. A., Stockton G.G. Methylphenidate abuse and psychiatric side effects, Primary Care Companion. J. Clin. Psychiatry 2000; 2: 159–164
  • Muray J. B. Psychophysiological effects of methylphenidate (Ritalin). Psycho. l Rep. 1987; 61: 315–336
  • Niculescu M., Ehrlich M. E., Unterwald E. M. Age-specific behavioral responses to psychostimulants in mice. Pharmacol. Biochem. Behav. 2005; 82: 280–288
  • NIDA. Meeting Summary “Cross-sensitization between drugs: a behavioral and neural basis for ‘gateway’”. 2000, at http://www.nida.nih.gov/MeetSum/NS2000/Gatewayabs.html)
  • NIDA Notes. 2003; 18(3)
  • Nielsen J. A., Duda N. J., Mokler D. J., Moore K. E. Self-administration of central stimulants by rats: a comparison of the effects of d-amphetamine, methylphenidate and McNeil 4612. Pharmacol. Biochem. Behav 1984; 20: 227–232
  • Nolan E. E., Gadow K. D., Sprafkin J. Stimulant medication withdrawal during long-term therapy in children with comorbid attention-defiict hyperactivity disorder and chronic multiple Tic disorder. Pediatric 1999; 103: 730–737
  • Pan D., Gatley S. J., Dewey S. L., Chen R., Alexoff D. A., et al. Binding of brominic-substituted analogs of methylphenidate to monoamine transporters. Eur. J. Pharmacol. 1994; 264: 177–182
  • Parran T. V., Jasinski D. R. Intravenous methylphenidate abuse: prototype for prescription drug abuse. Arch. Intern. Med. 1991; 151: 781–783
  • Patrick K. S., Markowitz J. S. Pharmacology of methylphenidate, amphetamine enantiomers, and pemoline in attention deficit/hyperactivity disorder. Human Psychopharmacol. 1997; 12: 527–546
  • Pudiak C. M., Bozarth M. A. L-NAME and MK-801 attenuate sensitization to the locomotor-stimulating effects of cocaine. Life Sci. 1993; 53: 1517–1524
  • Puumala T., Ruotsalainan S., Jakala P., Kaivisto E., Riekkinen P., Sirvio J. Behavioral and pharmacological studies on the validation of new animal model for attention deficit hyperactivity disorder. Neurobiol. Learn. Mem. 1996; 66: 198–211
  • Rakie P. Development of the primate cerebral cortex. Child and Adolescent Psychiatry., M. Lewis. Williams and Wilkins, Baltimore 1986
  • Randall S., Hannigan J. H. In utero alcohol and postnatal methylphenidate: locomotion and dopamine receptors. Neurotoxicol. Teratol. 1999; 21: 587–593
  • Ritz M. C., Lamb R. J., Goldberg S.R., Kuhar M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987; 237: 1219–1223
  • Robbins T. W., Jones G. H., Sahakian B. J. Control stimulants, transmitters and attention disorder: a perspective from animal studies. Attention deficit disorders: Clinical basic research., T. Sagvolden, T. Archer. Lawrence Erlbaum, Hillsdale 1989; 199–222
  • Robbins M. S., Kumar S., Walker-Barnes C., Feaster D. J., Briones E., et al. Ethnic differences in comorbidity among substance-abusing adolescents referred to outpatient therapy. J. Amer. Acad. Child Adolesc. Psychiatry 2002; 41: 394–401
  • Robinson T. E. Persistent sensitizing effects of drugs on brain dopamine systems and behavior: implications for addiction and relapse. Biological Basis of Substance Abuse, S. G. Korenman, J. D. Barchas. University Press, Oxford 1993; 373–402
  • Robinson T. E., Becker J. B. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986; 396: 157–198
  • Robinson T. E., Berridge K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 1993; 18: 247–291
  • Roffman J. L., Raskin L. A. Stereotyped behavior: effects of d-amphetamine and methylphenidate in the young rat. Pharmacol. Biochem. Behav. 1997; 58: 1095–1102
  • Russell V. A. The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat (SHR) as studied in vitro by the superfusion slice technique. Neurosci. Biobehav. Rev. 2000; 24: 133–136
  • Sadile A.G., Pellicano M. P., Sagvolden T., Sergeant A. J. NMDA and non-NMDA sensitive study. Behav. Brain Res. 1996; 78: 163–174
  • Safer D. J., Zito E. M. Fine, Increase methylphenidate usage for attention deficit disorder in the 1990s. Pediatrics 1996; 98: 1084–1088
  • Sagvolden T., Sergeant J. A. Attention deficit/hyperactivity disorder-from brain dysfunction to behaviour. Behav. Brain Res. 1998; 94: 1–10
  • Sagvolden T. Behavioral validation of spontaneous hypertensive rat (SHR) as an animal model of attention deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 2000; 24: 31–39
  • Scheel-Kruger J. Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Eur. J. Pharmacol. 1971; 14: 47–59
  • Schenk S., Davidson E. S. Stimulant pre-exposure sensitizes rats and humans to the rewarding effects of cocaine. NIDA Res. Monogr. 1998; 169: 56–82
  • Segal D. S., Geyer M. A., Schuckit M. A. Stimulant-induced psychosis: an evaluation of animal models. Essays Neurochem. Neuropharmacol. 1981; 5: 95–129
  • Segal D. S., Kuczenski R. Repeated binge exposure to amphetamine and methamphetamine: Behavioral and neurochemical characterization. J. Pharmacol. Exp. Ther. 1987; 282: 561–573
  • Segal D. S., Kuczenski R. Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile. J. Pharmacol. Exp. Ther 1999; 291: 19–30
  • Shuster L., Hudson J., Anton M., Righi D. Sensitization of mice to methylphenidate. Psychopharmacology (Berl). 1982; 77: 31–36
  • Silbergeld E. K., Goldberg A. M. Lead-induced behavioral dysfunction: an animal model of hyperactivity. Exp. Neurol. 1974; 42: 146–157
  • Solanto M. V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav. Brain Res. 1998; 94: 127–152
  • Solanto M. V. Clinical psychopharmacology of AD/HD: implications for animal models. Neurosci. Biobehav. Rev. 2000; 24: 27–30
  • Spear L. P., Brake S. C. Periadolescence: Age-dependent behavior and psychopharmacological responsivity in rats. Dev. Psychobiol. 1983; 16: 83–109
  • Spensley J., Rockwell D. A. Psychosis during methylphenidate abuse. N. Engl. J. Med. 1972; 286: 880–881
  • Sripada S., Gaytan O., Al-rahim S., Swann A., Dafny N. Dose-related effects of MK-801 on acute and chronic methylphenidate administration. Brain Res. 1998; 814: 78–85
  • Stewart J., Badiani A. Tolerance and sensitization in the behavioral effects of drugs. Behav. Pharmacol. 1993; 4: 289–312
  • Swanson J. M., Sergeant J. A., Taylor E., Sonuga-Barke E. J., Jensen P. S., et al. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998; 351: 429–433
  • Swanson J. M., Gupta S., Guinta D., Flynn D., Agler D., et al. Acute tolerance to methylphenidate in the treatment of attention deficit hyperactivity disorder in children. Clin. Pharmacol. Ther. 1999; 66: 295–305
  • Taylor E. Clinical foundations of hyperactivity research. Behav. Brain Res. 1998; 94: 11–24
  • Teo S. K., Stirling D. I., Thomas S. D., Khetani V. D. Neurobehavioral effects of racemic threo-methylphenidate and its D and L enantiomers in rats. Pharmacol. Biochem. Behav. 2003; 74: 747–754
  • Volkow N. D., Ding Y. S., Fowler J. S., Want G. J., Logan J., et al. Is methylphenidate like?. cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch. Gen. Psychiatry 2001; 52: 456–463
  • Volkow N. D., Want G. J., Fowler J. S., Hitzemann R., Angristm B., et al. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implication in addiction. Am. J. Psychiatr. 1996; 156: 16–26
  • Wang G. J., Volkow N. D., Hitzemann R. J., Wong C., Angrist B., et al. Behavioral and cardiovascular effects of intravenous methylphenidate in normal subjects and cocaine abusers. Eur. Addict Res. 1997; 41: 49–54
  • West R. Theories of addiction. Addiction 2001; 96: 3–13
  • White P. J., Kalivas P. W. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 1998; 51: 141–153
  • Wiley R. F. Abuse of methylphenidate (Ritalin). New Engl. J. Med. 1971; 285: 464
  • Willner P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 1986; 10: 677–690
  • Wilson L. M. Some developmental aspects of open-field behavior in the spontaneously hypertensive rat (SHR) and two normotensive strains. 1976, Paper presented to the Int Soc Devl Psychobiol meeting, Toronto, Canada
  • Wolf M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 1998; 54: 88–102
  • Wolf M. E., Dahlin S. L., Hu X. T., Xue C. J., White K. Effects of lesions of prefrontal cortex, amygdale, or fornix on behavioral sensitization to amphetamine: comparison with N-methyl-D-aspartate antagonists. Neuroscience 1995; 69: 417–439
  • Wood W. G., Schreiber H. L., Villescas R., Carlson R. H. Effects of prior experience and ‘functional disturbance’ on acute and chronic tolerance to methylphenidate. Psychopharmacology (Berl). 1997; 51: 165–168
  • Wultz B., Sagvolden T., Moser E. I., Moser M. B. The spontaneous hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neurol Biol 1990; 53: 88–102
  • Yang P., Beasley A., Eckermann K., Swann A., Dafny N. Valproate prevents the induction of sensitization to methylphenidate (ritalin) in rats. Brain Res. 2000a; 887: 276–284
  • Yang P., Beasley A., Swann A., Dafny N. Valproate modulates the expression of methylphenidate (ritalin) sensitization. Brain Res. 2000b; 874: 216–220
  • Yang P., Singhal N., Modi G., Swann A., Dafny N. Effects of lithium chloride on induction and expression of methylphenidate sensitization. Eur J Pharmacol 2001; 426: 65–72
  • Yang P., Swann A., Dafny N. NMDA receptor antagonist disrupts acute and chronic effects of methylphenidate. Physiol Behav 2000c; 71: 133–145
  • Zahnister N. R., Larson G. A., Gerhardt G. A. In vivo dopamine clearance rate in rat striatum regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J. Pharmacol. Exp. Ther. 1999; 289: 266–277

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.