378
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Antioxidant modulation in restoring mitochondrial function in neurodegeneration

, , , &
Pages 218-235 | Received 28 Sep 2015, Accepted 10 Apr 2016, Published online: 10 May 2016

References

  • Gao H-M, Hong J-S. Gene–environment interactions: key to unraveling the mystery of Parkinson's disease. Prog Neurobiol 2011;94(1):1–19.
  • Ramanan VK, Saykin AJ. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. Am J Neurodegener Dis 2013;2(3):145.
  • Steenland K, Zhao L, Goldstein F, et al. Biomarkers for predicting cognitive decline in those with normal cognition. J Alzheimer's Dis 2013;40(3):587–94.
  • Cools A, van den Bercken JH, Horstink M, et al. Cognitive and motor shifting aptitude disorder in Parkinson's disease. J Neurol Neurosurg Psychiat 1984;47(5):443–53.
  • Sorrentino P, Iuliano A, Polverino A, et al. The dark sides of amyloid in Alzheimer's disease pathogenesis. FEBS Lett 2014;588(5):641–52.
  • Parnetti L, Chiasserini D, Persichetti E, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson's disease. Movement Dis 2014;29(8):1019–27.
  • Lindberg O, Westman E, Karlsson S, et al. Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer's disease and frontotemporal lobar degeneration? Frontiers Aging Neurosci 2012;4:32. doi:10.3389/fnagi.2012.00032
  • Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 1996;55(3):259–72.
  • Fernandez-Checa JC, Fernandez A, Morales A, et al. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Dis Drug Targets 2010;9(4):439–54.
  • Yong-Kee C, Sidorova E, Hanif A, et al. Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson's disease. Neurotoxicity Res 2012;21(2):185–94.
  • Caldeira GL, Ferreira IL, Rego AC. Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimer's Dis 2012;34(1):115–31.
  • Chaturvedi RK, Beal MF. Mitochondrial diseases of the brain. Free Radical Biol Med 2013;63:1–29.
  • Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biol Med 2013;62:90–101.
  • Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007;120(5):838–48.
  • Reddy PH. Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons. Antioxidants Redox Signal 2007;9(10):1647–58.
  • de Oliveira MR, Elangovan N, Ljubkovic M, et al. The roads to mitochondrial dysfunction. BioMed Research Int 2015;2015:2. doi:10.1155/2015/235370
  • Lee Y. Mitochondrial biology in Parkinson's disease. Interdiscip Bio Central 2009. doi:10.4051/ibce.2009.2.0011
  • Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 2011;1812(11):1359–70.
  • Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 2014;311(1):33–44.
  • Shyur L-F, Tsung J-H, Chen J-H, et al. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Int J Appl Sci Eng 2005;3(3):195–202.
  • Kakuda T. Neuroprotective effects of the green tea components theanine and catechins. Biol Pharm Bull 2002;25(12):1513–8.
  • Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197–212.
  • Shukitt-Hale B, Lau FC, Joseph JA. Berry fruit supplementation and the aging brain. J Agric Food Chem 2008;56(3):636–41.
  • McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J Neurosci 2011;31(44):15703–15.
  • Naderi J, Somayajulu-Nitu M, Mukerji A, et al. Water-soluble formulation of Coenzyme Q10 inhibits Bax-induced destabilization of mitochondria in mammalian cells. Apoptosis 2006;11(8):1359–69.
  • Reddy TP, Manczak M, Calkins MJ, et al. Toxicity of neurons treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31. Int J Environ Research Public Health 2011;8(1):203–21.
  • Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290(5806):457–65.
  • Clayton DA. Replication of animal mitochondrial DNA. Cell 1982;28(4):693–705.
  • Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1953;1(4):188–211.
  • Shoshan-Barmatz V, Israelson A, Brdiczka Da, et al. The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 2006;12(18):2249–70.
  • Keinan N, Pahima H, Ben-Hail D, et al. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochimica et Biophysica Acta (BBA) Mol Cell Res 2013;1833(7):1745–54.
  • Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399(6735):483–7.
  • Shi Y, Chen J, Weng C, et al. Identification of the protein–protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochem Biophys Res Commun 2003;305(4):989–96.
  • Crompton M, Virji S, Ward JM. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 1998;258(2):729–35.
  • Gabriel K, Egan B, Lithgow T. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. The EMBO J 2003;22(10):2380–6.
  • Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997;77(3):731–58.
  • Lodish HF, Berk A, Zipursky SL, et al. Molecular cell biology. Citeseer; 2000.
  • Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human Mol Genet 2009;18(R2):R169–R76.
  • Cipolat S, de Brito OM, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 2004;101(45):15927–32.
  • Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007;130(3):548–62.
  • Lee Y-j, Jeong S-Y, Karbowski M, et al. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 2004;15(11):5001–11.
  • Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci 2008;105(5):1638–43.
  • Poole AC, Thomas RE, Yu S, et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PloS One 2010;5(4):e10054.
  • Geisler S, Holmström KM, Treis A, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 2010;6(7):871–8.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59(3):527–605.
  • Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 1993;90(17):7915–22.
  • Souza-Pinto NC, Croteau DL, Hudson EK, et al. Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res 1999;27(8):1935–42.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82(2):291–5.
  • Junn E, Jang WH, Zhao X, et al. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res 2009;87(1):123–9. Epub 2008/08/20. doi: 10.1002/jnr.21831. PubMed PMID: 18711745; PubMed Central PMCID: PMCPMC2752655.
  • Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 2004;5(2):213–8.
  • Panegyres PK, Chen H-Y. Differences between early and late onset Alzheimer's disease. Am J Neurodegener Dis 2013;2(4):300.
  • Shampoo MA, Kyle RA, Steensma DP. Alois Alzheimer-Alzheimer Disease. In Mayo Clinic Proceedings; 2013. doi:10.1016/j.mayocp.2013.01.031
  • Geda YE, Schneider LS, Gitlin LN, et al. Neuropsychiatric symptoms in Alzheimer's disease: past progress and anticipation of the future. Alzheimer's Dementia 2013;9(5):602–8.
  • Savva GM, Wharton SB, Ince PG, et al. Age, neuropathology, and dementia. New England J Med 2009;360(22):2302–9.
  • Manczak M, Reddy PH. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Human Mol Genet 2012;21(11):2538–47.
  • Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease Annals of Neurology 1997;42(1):85–94.
  • Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013;108:21–43.
  • Mosconi L, Berti V, Swerdlow RH, et al. Maternal transmission of Alzheimer's disease: prodromal metabolic phenotype and the search for genes. Human Genomics 2010;4(3):170–93.
  • Sun Q, Jia N, Wang W, et al. Protective effects of Astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. 2014;9(6):e98866. doi:10.1371/journal.pone.0098866
  • Wang DB, Kinoshita C, Kinoshita Y, et al. p53 and mitochondrial function in neurons. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 2014;1842(8):1186–97.
  • Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiat 2011;35(2):320–30.
  • Caspersen C, Chen X, Pollak S, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimers disease. Science 2004;304:448–52.
  • Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Mol Genet 2006;15(9):1437–49.
  • Shi Q, Xu H, Kleinman WA, et al. Novel functions of the α-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer's disease. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 2008;1782(4):229–38.
  • Shi Q, Xu H, Yu H, et al. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 2011;286(20):17640–8.
  • Parker WD, Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology 1990;40(8):1302.
  • Terwel D, Bothmer J, Wolf E, et al. Affected enzyme activities in Alzheimer's disease are sensitive to antemortem hypoxia. J Neurol Sci 1998;161(1):47–56.
  • Casley C, Land J, Sharpe M, et al. β-Amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 2002;10(3):258–67.
  • Filosto M, Scarpelli M, Cotelli MS, et al. The role of mitochondria in neurodegenerative diseases. J Neurol 2011;258(10):1763–74.
  • Cho D-H, Nakamura T, Fang J, et al. S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 2009;324(5923):102–5.
  • Zhu X, Perry G, Smith MA, et al. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimer's Dis 2013;33(01):S253.
  • Barsoum MJ, Yuan H, Gerencser AA, et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. The EMBO J 2006;25(16):3900–11.
  • Du H, Yan SS. Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 2010;1802(1):198–204.
  • Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 2008;14(10):1097–105.
  • Mattson MP. Calcium and neurodegeneration. Aging Cell 2007;6(3):337–50.
  • Naga KK, Sullivan PG, Geddes JW. High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. The J Neurosci 2007;27(28):7469–75.
  • Green KN, LaFerla FM. Linking calcium to Aβ and Alzheimer's disease. Neuron 2008;59(2):190–4.
  • Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, et al. Mitochondrial Ca2+ overload underlies Aβ oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008;3(7):e2718.
  • Núñez L, Senovilla L, Sanz-Blasco S, et al. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. The J Physiol 2007;580(2):385–95.
  • Berridge MJ. Calcium hypothesis of Alzheimer's disease. Pflügers Archiv Eur J Physiol 2010;459(3):441–9.
  • Maraganore DM. Epidemiology and genetics of Parkinson's disease. In: Adler CH, Ahlskog JE, Totowa NJ, editors.Parkinson's disease and movement disorders: diagnosis and treatment guidelines for the practising physician. Totowa, NJ: Humana Press; 2000:85–90.
  • Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology 2001;56(suppl 5):S1–S88.
  • Parkinson J. An essay on the shaking palsy. The J Neuropsychiat Clin Neurosci 2012;14(2):223–36.
  • Gallardo G, Schlüter OM, Südhof TC. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nat Neurosci 2008;11(3):301–8.
  • Kramer ML, Schulz-Schaeffer WJ. Presynaptic α-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. The J Neurosci 2007;27(6):1405–10.
  • Swerdlow RH. The neurodegenerative mitochondriopathies. J Alzheimer's Dis 2009;17(4):737.
  • Esteves A, Arduino D, Silva D, et al. Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinson's Dis 2011;2011. doi:10.4061/2011/693761
  • Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008;283(14):9089–100.
  • Bender A, Desplats P, Spencer B, et al. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease. PloS One 2013;8(4):e62277.
  • Bindoff L, Birch-Machin M, Cartlidge N, et al. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci 1991;104(2):203–8.
  • Krige D, Carroll MT, Cooper JM, et al. Platelet mitochondria function in Parkinson's disease. Ann Neurol 1992;32(6):782–8.
  • Ramsay RR, Singer TP. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoraductase by rotenone, piericidin A, and MPP+. Biochem Biophys Res Commun 1992;189(1):47–52.
  • Berndt N, Holzhütter HG, Bulik S. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis. FEBS J 2013;280(20):5080–93.
  • Alam Z, Jenner A, Daniel S, et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997;69(3):1196–203.
  • Dexter D, Carter C, Wells F, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989;52(2):381–9.
  • Fiskum G, Starkov A, Polster BM, et al. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease. Ann New York Acad Sci 2003;991(1):111–9.
  • Santos D, Esteves AR, Silva DF, et al. The impact of mitochondrial fusion and fission modulation in sporadic parkinson's disease. Mol Neurobiol 2014;52(1):573–86.
  • Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013;496(7445):372–6.
  • Darios F, Corti O, Lücking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Human Mol Genet 2003;12(5):517–26.
  • Koyano F, Okatsu K, Ishigaki S, et al. The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes Cells 2013;18(8):672–81.
  • Matsui H, Gavinio R, Asano T, et al. PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Human Mol Genet 2013;22(12):2423–34.
  • Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Nl Acad Sci 2013;110(21):8638–43.
  • Amboni M, Pellecchia MT, Cozzolino A, et al. Cerebellar and pyramidal dysfunctions, palpebral ptosis and weakness as presenting symptoms of PARK-2. Movement Dis 2009;24(2):303–5.
  • Haskin J, Szargel R, Shani V, et al. AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Human Mol Genet 2013:ddt058.
  • Gandhi S, Muqit M, Stanyer L, et al. PINK1 protein in normal human brain and Parkinson's disease. Brain 2006;129(7):1720–31.
  • Deas E, Plun-Favreau H, Wood NW. PINK1 function in health and disease. EMBO Mol Med 2009;1(3):152–65.
  • Okatsu K, Uno M, Koyano F, et al. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem 2013;288(51):36372–84.
  • Thomas B. Parkinson's disease: from molecular pathways in disease to therapeutic approaches. Antioxidants Redox Signal 2009;11(9):2077–82.
  • Hayashi T, Ishimori C, Takahashi-Niki K, et al. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 2009;390(3):667–72.
  • Takahashi-Niki K, Niki T, Iguchi-Ariga S, et al. [Function of DJ-1 in mitochondria]. Yakugaku zasshi J Pharm Soc Japan 2011;132(10):1105–10.
  • Minakawa EN, Yamakado H, Tanaka A, et al. Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson's disease, displays mitochondrial dysfunction. Neurosci Res 2013;77(4):228–33.
  • Ued FdV, Weffort VRS. Antioxidant vitamins in the context of nonalcoholic fatty liver disease in obese children and adolescents. Revista Paulista de Pediatria 2013;31(4):523–30.
  • Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res 2014;113(3):801–9.
  • Farid N, Inbal D, Nakhoul N, et al. Vitamin E and diabetic nephropathy in mice model and humans. World J Nephrol 2013;2(4):111.
  • Mocchegiani E, Costarelli L, Giacconi R, et al. Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Res Rev 2014;14:81–101.
  • Jing Y-H, Chen K-H, Kuo P-C, et al. Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology 2013;98(2):116–27.
  • Renaud J, Bournival J, Zottig X, et al. Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotoxicity Res 2014;25(1):110–23.
  • Barger JL. An adipocentric perspective of resveratrol as a calorie restriction mimetic. Ann New York Acad Sci 2013;1290(1):122–9.
  • de Oliveira MR, Nabavi SF, Manayi A, et al. Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta (BBA) General Subjects 2016;1860(4):727–45.
  • Renno WM, Al-Maghrebi M, AlShammari A, et al. (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 2013;62(3):221–31.
  • Cruz BR, González GJ, Sánchez CP. [Functional properties and health benefits of lycopene]. Nutricion Hospitalaria 2012;28(1):6–15.
  • Montinaro M, Uberti D, Maccarinelli G, . Dietary zeolite supplementation reduces oxidative damage and plaque generation in the brain of an Alzheimer's disease mouse model. Life Sci 2013;92(17):903–10.
  • Jou MJ, Peng TI, Hsu LF, et al. Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca2+-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 2010;48(1):20–38.
  • Kölsch H, Ludwig M, Lütjohann D, et al. Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17β. J Neural Transm 2001;108(4):475–88.
  • Storch A, Kaftan A, Burkhardt K, et al. 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 2000;107(3):281–93.
  • Dhitavat S, Ortiz D, Rogers E, et al. Folate, vitamin E, and acetyl-L-carnitine provide synergistic protection against oxidative stress resulting from exposure of human neuroblastoma cells to amyloid-beta. Brain Res 2005;1061(2):114–7.
  • Selvatici R, Marani L, Marino S, et al. In vitro mitochondrial failure and oxidative stress mimic biochemical features of Alzheimer disease. Neurochem Int 2013;63(2):112–20.
  • Ballaz S, Morales I, Rodríguez M, et al. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 2013;91(12):1609–17.
  • Choi Y-T, Jung C-H, Lee S-R, et al. The green tea polyphenol (−)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001;70(5):603–14.
  • Dragicevic N, Smith A, Lin X, et al. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce. Alzheimer's amyloid-induced mitochondrial dysfunction. J Alzheimer's Dis 2011;26(3):507.
  • Schroeder EK, Kelsey NA, Doyle J, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxidants Redox Signal 2009;11(3):469–80.
  • Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002;277(34):30574–80.
  • Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component,(–)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep 2002;7(3):171–7.
  • Vingtdeux V, Dreses-Werringloer U, Zhao H, et al. Therapeutic potential of resveratrol in Alzheimer's disease. BMC Neurosci 2008;9(Suppl 2):S6.
  • Jang J-H, Surh Y-J. Protective effect of resveratrol on β-amyloid-induced oxidative PC12 cell death. Free Radical Biol Med 2003;34(8):1100–10.
  • Bastianetto S, Krantic S, Chabot J-G, . Possible involvement of programmed cell death pathways in the neuroprotective action of polyphenols. Curr Alzheimer Res 2011;8(5):445–51.
  • Mudò G, Mäkelä J, Di Liberto V, et al. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci 2012;69(7):1153–65.
  • Qu M, Li L, Chen C, et al. Protective effects of lycopene against amyloid β-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 2011;505(3):286–90.
  • Yi F, He X, Wang D. Lycopene protects against MPP+-induced cytotoxicity by maintaining mitochondrial function in SH-SY5Y cells. Neurochem Res 2013;38(8):1747–57.
  • Dewapriya P, Himaya S, Li Y-X, et al Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease. Food Chem 2013;141(2):1147–57.
  • Sarvestani NN, Khodagholi F, Ansari N, et al. Involvement of p-CREB and phase II detoxifying enzyme system in neuroprotection mediated by the flavonoid calycopterin isolated from Dracocephalum kotschyi. Phytomedicine 2013;20(10):939–46.
  • Luchtman DW, Meng Q, Wang X, et al. Omega-3 fatty acid eicospentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem.2013;124(6):855–68.
  • Guo X, Chen Y, Liu Q, et al. Ac-cel, a novel antioxidant, protects against hydrogen peroxide-induced injury in PC12 cells via attenuation of mitochondrial dysfunction. J Mol Neurosci 2013;50(3):453–61.
  • Khan A, Vaibhav K, Javed H, et al. 1, 8-cineole (eucalyptol) mitigates inflammation in amyloid beta toxicated PC12 cells: relevance to Alzheimer's disease. Neurochem Res 2014;39(2):344–52.
  • Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 2008;14(2):45–53.
  • Solesio ME, Prime TA, Logan A, et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 2013;1832(1):174–82.
  • Yan Y, Gong K, Ma T, et al. Protective effect of edaravone against Alzheimer's disease-relevant insults in neuroblastoma N2a cells. Neurosci Lett 2012;531(2):160–5. doi: http://dx.doi.org/10.1016/j.neulet.2012.10.043.
  • Yang L, Zhao K, Calingasan NY, et al. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Antioxidants Redox Signal 2009;11(9):2095–104.
  • Navarro A, Gómez C, Sánchez-Pino M-J, et al. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regulatory Integrative Comparative Physiol 2005;289(5):R1392–9.
  • Tiwari V, Kuhad A, Bishnoi M, et al. Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative–nitrosative stress in rats. Pharm Biochem Behav 2009;93(2):183–9.
  • Figueiredo CP, Bicca MA, Latini A, et al. Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity. J Alzheimer's Dis 2010;24(1):61–75.
  • Cente M, Filipcik P, Mandakova S, et al. Expression of a truncated human tau protein induces aqueous-phase free radicals in a rat model of tauopathy: implications for targeted antioxidative therapy. J Alzheimer's Dis 2008;17(4):913–20.
  • Murakami K, Murata N, Ozawa Y, et al. Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer's disease. J Alzheimer's Dis 2010;26(1):7–18.
  • Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (–)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001;78(5):1073–82.
  • Sharma M, Gupta Y. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 2002;71(21):2489–98.
  • Long J, Gao H, Sun L, et al. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson's disease model. Rejuv Res 2009;12(5):321–31.
  • Obulesu M, Dowlathabad MR, Bramhachari P. Carotenoids and Alzheimer's disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011;59(5):535–41.
  • Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease. Neurochem Res 2011;36(8):1435–43.
  • Ng LF, Gruber J, Cheah IK, et al. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radical Biol Med 2014;71:390–401.
  • Muthukumaran K, Leahy S, Harrison K, et al. Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson's disease. BMC Neurosci 2014;15(1):21.
  • Sikorska M, Lanthier P, Miller H, et al. Nanomicellar formulation of coenzyme Q 10 (Ubisol-Q 10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiol Aging 2014;35(10):2329–46.
  • Muthukumaran K, Smith J, Jasra H, et al. Genetic susceptibility model of Parkinson's disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10. J Parkinsons Dis 2014;4(3):523–30.
  • Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. New England J Med 1997;336(17):1216–22.
  • Mangialasche F, Kivipelto M, Mecocci P, et al. High plasma levels of vitamin E forms and reduced Alzheimer's disease risk in advanced age. J Alzheimer's Dis 2010;20(4):1029.
  • Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004;61(1):82–8.
  • Solanki I, Parihar P, Mansuri ML, et al. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutrition Int Rev J 2015;6(1):64–72.
  • Sadhu A, Upadhyay P, Agrawal A, et al. Management of cognitive determinants in senile dementia of alzheimer's type: therapeutic potential of a novel polyherbal drug product. Clin Drug Investig 2014;34(12):857–69.
  • Sharma SK, El ReFaey H, Ebadi M. Complex-1 activity and 18 F-DOPA uptake in genetically engineered mouse model of Parkinson's disease and the neuroprotective role of coenzyme Q 10. Brain Res Bull 2006;70(1):22–32.
  • Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiat Dis Treatment 2009;5:597.
  • Shults CW, Beal MF, Fontaine D, et al. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology 1998;50(3):793–5.
  • Shults CW, Beal MF, Song D, et al. Pilot trial of high dosages of coenzyme Q 10 in patients with Parkinson's disease. Exp Neurol 2004;188(2):491–4.
  • Beal MF, Oakes D, Shoulson I, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 2014;71(5):543–52. Epub 2014/03/26. doi: 10.1001/jamaneurol.2014.131. PubMed PMID: 24664227.
  • Senin U, Parnetti L, Barbagallo-Sangiorgi G, et al. Idebenone in senile dementia of Alzheimer type: a multicentre study. Arc Gerontol Geriatrics 1992;15(3):249–60.
  • Gutzmann H, Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer's disease: update on a 2-year double-blind multicentre study. J Neural Transm Suppl 1998;54:301–10.
  • Snow BJ, Rolfe FL, Lockhart MM, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Movement Dis Official J Movement Dis Soc 2010;25(11):1670–4. Epub 2010/06/23. doi: 10.1002/mds.23148. PubMed PMID: 20568096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.