994
Views
33
CrossRef citations to date
0
Altmetric
Review Article

A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders

&
Pages 805-811 | Received 21 Apr 2016, Accepted 11 Oct 2016, Published online: 01 Nov 2016

References

  • Chang JY, Stamer WD, Bertrand J, et al. Role of nitric oxide in murine conventional outflow physiology. Am J Physiol Cell Physiol 2015;309(4):C205–14.
  • Zheng X, Bobich JA. A sequential view of neurotransmitter release. Brain Res Bull 1998;47(2):117–28.
  • Clinton J, Blackman SE, Royston MC, et al. Differential synaptic loss in the cortex in Alzheimer's disease: a study using archival material. Neuroreport 1994;5(4):497–500.
  • Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 1998;43(4):239–43.
  • Hess EJ, Collins KA, Wilson MC. Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 1996;16(9):3104–11.
  • Greber-Platzer S, Fleischmann C, Nussbaumer C, et al. Increased RNA levels of the 25 kDa synaptosomal associated protein in brain samples of adult patients with Down syndrome. Neurosci Lett 2003;336(2):77–80.
  • Nicot A, Ratnakar PV, Ron Y, et al. Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 2003;126(2):398–412.
  • Brunger AT. Structural insights into the molecular mechanism of Ca (2+)-dependent exocytosis. Curr Opin Neurobiol 2000;10(3):293–302.
  • Wei C, Thatcher EJ, Olena AF, et al. miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PloS One 2013;8(2):e57080.
  • Cai F, Chen B, Zhou W, et al. SP1 regulates a human SNAP‐25 gene expression. J Neurochem 2008;105(2):512–23.
  • Oyler GA, Polli JW, Wilson MC, et al. Developmental expression of the 25-kDa synaptosomal-associated protein (SNAP-25) in rat brain. Proc Natl Acad Sci USA 1991;88:5247–51.
  • Pozzi D, Condliffe S, Bozzi Y, et al. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA 2008;105(1):323–8.
  • Gonzalo S, Linder ME. SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 1998;9(3):585–97.
  • Huang K, Sanders S, Singaraja R, et al. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J 2009;23(8):2605–15.
  • Connell E, Darios F, Peak-Chew S, et al. N-terminal acetylation of the neuronal protein SNAP-25 is revealed by the SMI81 monoclonal antibody. Biochemistry 2009;48(40):9582–9.
  • Meffert MK, Calakos NC, Scheller RH, et al. Nitric oxide modulates synaptic vesicle docking/fusion reactions. Neuron 1996;16(6):1229–36.
  • Gao J, Hirata M, Mizokami A, et al. Differential role of SNAP-25 phosphorylation by protein kinases a and C in the regulation of SNARE complex formation and exocytosis in PC12 cells. Cell Signal 2012;28(5):425–37.
  • Veit M, Söllner TH, Rothman JE. Multiple palmitoylation of synaptotagmin and the t‐SNARE SNAP‐25. FEBS Lett 1996;385(1–2):119–23.
  • Bark IC, Wilson MC. Regulated vesicular fusion in neurons: snapping together the details. Proc Natl Acad Sci USA 1994;91(11):4621–24.
  • Greaves J, Chamberlain LH. Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 2011;124(8):1351–60.
  • Mohrmann R, de Wit H, Connell E, et al. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 2013;33(36):14417–430.
  • Femminella GD, Rengo G, Komici K, et al. Autonomic dysfunction in Alzheimer's disease: tools for assessment and review of the literature. J Alzheimers Dis 2014;42(2):369–77.
  • Zahid S, Khan R, Oellerich M, et al. Differential S-nitrosylation of proteins in Alzheimer's disease. Neuroscience 2016;256:126–36.
  • Ferrer I, Marti E, Tortosa A, et al. Dystrophic neurites of senile plaques are defective in proteins involved in exocytosis and neurotransmission. J Neuropathol Exp Neurol 1998;57(3):218–20.
  • Sze CI, Bi H, Kleinschmidt-DeMasters BK, et al. Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer's disease brains. J Neurol Sci 2000;175(2):81–90.
  • Shimohama S, Fujimoto S, Sumida, Y, et al. Differential expression of rat brain synaptic proteins in development and aging. Biochem Biophys Res Commun 1998;251(1):394–98.
  • Minger SL, Honer WG, Esiri MM, et al. Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer disease. J Neuropathol Exp Neurol 2001;60(10):929–36.
  • Dessi F, Colle MA, Hauw JJ, et al. Accumulation of SNAP‐25 immunoreactive material in axons of Alzheimer's disease. Neuroreport 1997;8(17):3685–9.
  • Gylys KH, Fein JA, Yang F, et al. Synaptic changes in Alzheimer's disease: increased amyloid-β and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 2004;165(5):1809–17.
  • Savioz A, Riederer BM, Heutink P, et al. Tau and neurofilaments in a family with frontotemporal dementia unlinked to chromosome 17q21-22. Neurobiol Dis 2003;12(1):46–55.
  • Sinclair LI, Tayler HM, Love S. Synaptic protein levels altered in vascular dementia. Neuropathol Appl 2015;41(4):533–43.
  • Guerini FR, Agliardi C, Sironi M, et al. Possible association between SNAP-25 single nucleotide polymorphisms and alterations of categorical fluency and functional MRI parameters in Alzheimer's disease. J Alzheimers Dis 2014;42(3):1015–28.
  • Furuya TK, Silva PNO, Payao SLM, et al. Analysis of SNAP25 mRNA expression and promoter DNA methylation in brain areas of Alzheimer's Disease patients. Neurosci 2012;220:41–6.
  • McKee AG, Loscher JS, O'Sullivan NC, et al. AAV‐mediated chronic over‐expression of SNAP‐25 in adult rat dorsal hippocampus impairs memory‐associated synaptic plasticity. J Neurochem 2010;112(4):991–1004.
  • Chen G, Hu T, Li Q, et al. Expression of synaptosomal-associated protein-25 in the rat brain after subarachnoid hemorrhage. Neural Regener Res 2013;8(29):2693–702.
  • Cao L, Wang F, Yang QG, et al. Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging. Behav Brain Res 2012;229(1):131–7.
  • Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease. Mol Neurodegener 2014;9(1):53.
  • Picchioni MM, Murray RM. Schizophrenia. BMJ 2014;335(7610):91–5.
  • Thompson PM, Rosenberger C, Qualls C. CSF SNAP-25 in Schizophrenia and Bipolar Illness. A Pilot Study. Neuropsychopharmacology 1999;21(6):717–22.
  • Young CE, Arima K, Xie J, et al. SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 1998;8(3):261–8.
  • Scarr E, Gray L, Keriakous D, et al. Increased levels of SNAP‐25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006;8(2):133–43.
  • Gray LJ, Dean B, Kronsbein HC, et al. Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 2010;178(2):374–80.
  • Wu JQ, Wang X, Beveridge NJ, et al. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia. PloS One 2012;7(4):e36351.
  • Fatemi SH, Earle JA, Stary JM, et al. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 2001;12(15):3257–62.
  • Antonucci F, Corradini I, Morini R et al. Reduced SNAP‐25 alters short‐term plasticity at developing glutamatergic synapses. EMBO Rep 2013;14(7):645–51.
  • Lochman J, Balcar VJ, Stastny F, et al. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory regions of the ADRA2A, DRD3 and SNAP-25 genes. Psychiatry Res 2013;205(1):7–12.
  • Dai D, Wang Y, Yuan J, et al. Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomed Rep 2014;2(5):729–36.
  • Fossati G, Morini R, Corradini I, et al. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 2015;22:1425–36.
  • Numakawa T, Yagasaki Y, Ishimoto T, et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004;13(21):2699–708.
  • Kumamoto N, Matsuzaki S, Inoue K, et al. Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin. Biochem Biophys Res Commun 2006;345(2):904–9.
  • Miguel RA, Beasley CL, Dwork AJ, et al. Increased SNARE protein-protein interactions in orbitofrontal and anterior cingulate cortices in schizophrenia. Biol Psychiatry 2015;78(6):361–73.
  • Barakauskas VE, Moradian A, Barr AM, et al. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 2016; pii: S0920-9964(16)30095-0.
  • Ozdemir H, Ertugrul A, Basar K, et al. Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012;39(1):62–8.
  • Polanczyk GV, Willcutt EG, Salum GA, et al. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int J Epidemiol 2014;43(2):434–42.
  • Corradini I, Donzelli A, Antonucci F, et al. Epileptiform activity and cognitive deficits in SNAP-25+/− mice are normalized by antiepileptic drugs. Cereb Cortex 2014;24(2):364–76.
  • Jones MD, Hess EJ. Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 2003;75(1):209–16.
  • Jones MD, Williams ME, Hess EJ. Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 2001;68(4):669–76.
  • Gao Q, Liu L, Chen Y, et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 2015;57:132–39.
  • Fan X, Hess EJ. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD. Neurobiol Dis 2007;26(1):201–11.
  • Pazvantoğlu O, Güneş S, Karabekiroğlu K, et al. The relationship between the presence of ADHD and certain candidate gene polymorphisms in a Turkish sample. Gene 2013;528(2):320–7.
  • Zhang H, Zhu S, Zhu Y, et al. An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr 2011;15(1):48–52.
  • Herken H, Erdal ME, Kenar ANI, et al. Association of SNAP-25 gene Ddel and Mnll polymorphisms with adult attention deficit hyperactivity disorder. Psychiatry Investig 2014;11(4):476–80.
  • Barr CL, Feng Y, Wigg K, et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000;5(4):405–9.
  • Mill J, Curran S, Kent L, et al. Association study of a SNAP‐25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 2002;114(3):269–71.
  • Mill J, Xu X, Ronald X, et al. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP‐25, and 5HT1B. Am J Med Genet B Neuropsychiatr Genet 2005;133(1):68–73.
  • Guerini FR, Bolognesi E, Chiappedi M, et al. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 2011;64(3):283–8.
  • Braida D, Guerini FR, Ponzoni L, et al. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 2005;5:e500.
  • Corradini I, Donzelli A, Antonucci F, et al. Epileptiform activity and cognitive deficits in SNAP-25+/− mice are normalized by antiepileptic drugs. Cereb Cortex 2014;24(2):364–76.
  • Rohena L, Neidich J, Truitt Cho M, et al. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis 2013;1(1):e26314.
  • Wang J, Wang J, Zhang Y, et al. Proteomic analysis on infantile spasm and prenatal stress. Epilepsy Res 2014;108(7):1174–83.
  • Kataoka M, Kuwahara R, Matsuo R, et al. Development-and activity-dependent regulation of SNAP-25 phosphorylation in rat brain. Neurosci Lett 2006;407(3):258–62.
  • Kataoka M, Yamamori S, Suzuki E, et al. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse. PloS One 2011;6(9):e25158.
  • Xiong Y, Zhang Y, Iqbal J, et al. Differential expression of synaptic proteins in unilateral 6‐OHDA lesioned rat model-A comparative proteomics approach. Proteomics 2014;14(15):1808–19.
  • Fisher H, Braun JE. Modulation of the SNARE core complex by dopamine. Can J Physiol Pharmacol 2000;78(10):856–9.
  • Garcia-Reitböck P, Anichtchik O, Bellucci A, et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain 2010;133(Pt 7):2032–44.
  • Moran LB, Duke DC, Deprez M, et al. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease. Neurogenetics 2006;7(1):1–11.
  • Itakura M, Kohda T, Kubo T, et al. Botulinum neurotoxin A subtype 2 reduces pathological behaviors more effectively than subtype 1 in a rat Parkinson's disease model. Biochem Biophys Res Commun 2014;447(2):311–4.
  • Greber S, Lubec G, Cairns N, et al. Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer's disease. Electrophoresis 1999;20(4–5):928–34.
  • Downes EC, Robson J, Grailly E, et al. Loss of synaptophysin and synaptosomal‐associated protein 25‐kDa (SNAP‐25) in elderly Down syndrome individuals. Neuropathol Appl Neurobiol 2008;34(1):12–22.
  • Weitzdoerfer R, Dierssen M, Fountoulakis M, et al. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl 2001;(61):59–70.
  • Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 2001;293(5529):493–8.
  • Zuccato C, Marullo M, Conforti P, et al. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol 2008;18(2):225–38.
  • Smith R, Klein P, Koc‐Schmitz Y, et al. Loss of SNAP‐25 and rabphilin 3a in sensory‐motor cortex in Huntington's disease. J Neurochem 2007;103(1):115–23.
  • Smith R, Klein P, Koc-Schmitz Y, et al. Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington's disease. J Neurochem 2007;103(1):115–23.
  • Young FB, Butland SL, Sanders SS, et al. Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012;97(2):220–38.
  • Smith GA, Rocha EM, McLean JR, et al. Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. Hum Mol Genet 2014;23(17):4510–27.
  • Freeman W, Morton AJ. Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull 2004;63(1):45–55.
  • Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 2014;83(24):2247–55.
  • Balkarli A, Sengül C, Tepeli E, et al. Synaptosomal-associated protein 25 (Snap-25) gene polymorphism frequency in fibromyalgia syndrome and relationship with clinical symptoms. BMC Musculoskelet Disord 2014;15:191.
  • Horling K, Schlegel G, Schulz S, et al. Hippocampal synaptic connectivity in phenylketonuria. Hum Mol Genet 2015;24(4):1007–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.