564
Views
63
CrossRef citations to date
0
Altmetric
Review Article

The roles of microRNAs in spinal cord injury

, , , , , , , , , , & show all
Pages 1104-1115 | Received 06 Mar 2017, Accepted 21 Apr 2017, Published online: 08 May 2017

References

  • Yan H, Hong P, Jiang M, Li H. MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regener Res 2012;7:1352–9.
  • Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: A comprehensive review on spinal cord injury. Prog Neurobiol 2014;114:25–57.
  • Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991;75:15–26.
  • Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury. Part I: Pathophysiologic mechanisms. Clin Neuropharmacol 2001;24:254–64.
  • Profyris C, Cheema SS, Zang D, et al. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 2004;15:415–36.
  • Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 2010;30:1564–76.
  • Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res 2002;137:37–47.
  • Liu NK, Xu XM. MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 2011;43:571–80.
  • Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.
  • Deng S, Calin GA, Croce CM, et al. Mechanisms of microRNA deregulation in human cancer. Cell Cycle 2008;7:2643–6.
  • Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol 2009;9:514–20.
  • Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013;9:328–39.
  • Hu JR, Lv GH, Yin BL. Altered microRNA expression in the ischemic-reperfusion spinal cord with atorvastatin therapy. J Pharmacol Sci. 2013;121:343–6.
  • Hu JZ, Huang JH, Zeng L, et al. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 2013;30:1349–60.
  • Jee MK, Jung JS, Im YB, et al. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Therapy 2012;23:508–20.
  • Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 2009;219:424–9.
  • Nakanishi K, Nakasa T, Tanaka N, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 2010;48:192–6.
  • Strickland ER, Hook MA, Balaraman S, et al. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 2011;186:146–60.
  • Yunta M, Nieto-Diaz M, Esteban FJ, et al. MicroRNA dysregulation in the spinal cord following traumatic injury. PloS One 2012;7:e34534.
  • Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull 2016;32:253–64.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.
  • Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 2002;21:4663–70.
  • Nieto-Diaz M, Esteban FJ, Reigada D, et al. MicroRNA dysregulation in spinal cord injury: Causes, consequences and therapeutics. Front Cell Neurosci 2014;8:53.
  • Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004;18:3016–27.
  • Basyuk E, Suavet F, Doglio A, et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 2003;31:6593–7.
  • Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004;303:95–8.
  • Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005;436:740–4.
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522–31.
  • Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834–8.
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415–9.
  • Peters L, Meister G. Argonaute proteins: Mediators of RNA silencing. Mol cell 2007;26:611–23.
  • Fitzpatrick JM, Anderson RC, McDermott KW. MicroRNA: Key regulators of oligodendrocyte development and pathobiology. Int J Biochem Cell Biol 2015;65:134–8.
  • Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron 2009;64:303–9.
  • Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev 2011;91:827–87.
  • Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766–70.
  • Li M, Marin-Muller C, Bharadwaj U, et al. MicroRNAs: Control and loss of control in human physiology and disease. World J Surg 2009;33:667–84.
  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:1902–10.
  • Jin L, Wu Z, Xu W, et al. Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol Bio Rep. 2014;41:3169–77.
  • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769–73.
  • Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495–500.
  • Biering-Sorensen E, Pedersen V, Clausen S. Epidemiology of spinal cord lesions in Denmark. Paraplegia 1990;28:105–18.
  • Kwon BK, Tetzlaff W, Grauer JN, et al. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 2004;4:451–64.
  • Esposito E, Cuzzocrea S. Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 2011;32:107–15.
  • Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008;20:214–21.
  • Bak M, Silahtaroglu A, Moller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008;14:432–44.
  • Krichevsky AM. MicroRNA profiling: From dark matter to white matter, or identifying new players in neurobiology. Sci World J 2007;7:155–66.
  • Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 2006;7:911–20.
  • Kosik KS. MicroRNAs and cellular phenotypy. Cell 2010;143:21–6.
  • He X, Yu Y, Awatramani R, Lu QR. Unwrapping myelination by microRNAs. Neuroscience 2012;18:45–55.
  • Smirnova L, Grafe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. Euro J Neurosci 2005;21:1469–77.
  • Ziu M, Fletcher L, Savage JG, et al. Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression. Spine J 2014;14:353–60.
  • Hawthorne AL, Popovich PG. Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 2011;8:252–61.
  • Keane RW, Kraydieh S, Lotocki G, et al. Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J Neuropathol Exp Neurol 2001;60:422–9.
  • Liu XJ, Zheng XP, Zhang R, et al. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015;8:3811–8.
  • Arbour N, Vanderluit JL, Le Grand JN, et al. Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci 2008;28:6068–78.
  • Bouillet P, Strasser A. BH3-only proteins – evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002;115:1567–74.
  • Izumi B, Nakasa T, Tanaka N, et al. MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury. Neurosci Lett 2011;492:114–8.
  • Liu D, Huang Y, Jia C, et al. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol 2015;35:483–91.
  • Buller B, Liu X, Wang X, et al. MicroRNA-21 protects neurons from ischemic death. FEBS J. 2010;277:4299–307.
  • Choi YJ, Saez B, Anders L, et al. D-cyclins repress apoptosis in hematopoietic cells by controlling death receptor Fas and its ligand FasL. Dev Cell. 2014;30:255–67.
  • Yoshino O, Matsuno H, Nakamura H, et al. The role of Fas-mediated apoptosis after traumatic spinal cord injury. Spine 2004;29:1394–404.
  • Liu G, Keeler BE, Zhukareva V, Houle JD. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol 2010;226:200–6.
  • Guo CJ, Pan Q, Li DG, et al. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol 2009;50:766–78.
  • Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635–47.
  • Yu DS, Lv G, Mei XF, et al. MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1. Spinal Cord 2014;53:182–9.
  • Jee MK, Jung JS, Choi JI, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain J Neurol 2012;135:1237–52.
  • Fleming JC, Norenberg MD, Ramsay DA, et al. The cellular inflammatory response in human spinal cords after injury. Brain J Neurol 2006;129:3249–69.
  • Blight AR. Macrophages and inflammatory damage in spinal cord injury. J Neurotrauma 1992;9 Suppl 1:S83–91.
  • Carlson SL, Parrish ME, Springer JE, et al. Acute inflammatory response in spinal cord following impact injury. Exp Neurol 1998;151:77–88.
  • Taoka Y, Okajima K, Uchiba M, et al. Role of neutrophils in spinal cord injury in the rat. Neuroscience 1997;79:1177–82.
  • Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 1999;44:1027–39; discussion 39–40.
  • Mahoney ET, Benton RL, Maddie MA, et al. ADAM8 is selectively up-regulated in endothelial cells and is associated with angiogenesis after spinal cord injury in adult mice. J Comp Neurol 2009;512:243–55.
  • Loy DN, Crawford CH, Darnall JB, et al. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol 2002;445:308–24.
  • Casella GT, Marcillo A, Bunge MB, Wood PM. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol 2002;173:63–76.
  • van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009;13:1577–85.
  • Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008;15:272–84.
  • Hu J, Zeng L, Huang J, et al. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 2015;1608:191–202.
  • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008;451:1125–9.
  • Ujigo S, Kamei N, Hadoush H, et al. Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 2014;39:1099–107.
  • Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomed Nanotech Biol Med 2015;12:643–53.
  • Yang Z, Duan H, Mo L, et al. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 2010;31:4846–54.
  • Cheng H, Huang YC, Chang PT, Huang YY. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury. Biochem Biophys Res Commun 2007;357:938–44.
  • Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol 2010;119:7–35.
  • Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009;32:638–47.
  • Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell stem Cell 2008;3:16–24.
  • Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49:377–91.
  • Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146–56.
  • Bignami A, Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 1974;153:27–38.
  • Barrett CP, Guth L, Donati EJ, Krikorian JG. Astroglial reaction in the gray matter lumbar segments after midthoracic transection of the adult rat spinal cord. Exp Neurol 1981;73:365–77.
  • Yang HY, Lieska N, Shao D, et al. Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol Chem Neuropathol 1994;21:155–76.
  • Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004;24:2143–55.
  • Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 2012;32:17935–47.
  • Sahni V, Mukhopadhyay A, Tysseling V, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 2010;30:1839–55.
  • Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a: A key regulator of astrocyte-mediated inflammatory response. PloS One 2012;7:e44789.
  • Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013;61:1018–28.
  • Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014;62:2044–60.
  • Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis. Glia 2015;63:194–205.
  • Alizadeh A, Karimi-Abdolrezaee S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol 2016;594:3539–52.
  • Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001;103:203–18.
  • Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PloS One 2012;7:e37589.
  • Becker T, Wullimann MF, Becker CG, et al. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 1997;377:577–95.
  • Yu JY, Chung KH, Deo M, et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008;314:2618–33.
  • Yu YM, Gibbs KM, Davila J, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Euro J Neurosci 2011;33:1587–97.
  • Li JS, Yao ZX. MicroRNAs: Novel regulators of oligodendrocyte differentiation and potential therapeutic targets in demyelination-related diseases. Mol Neurobiol 2012;45:200–12.
  • Shin D, Shin JY, McManus MT, et al. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 2009;66:843–57.
  • Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 2010;65:597–611.
  • Lau P, Verrier JD, Nielsen JA, et al. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 2008;28:11720–30.
  • Chen X, Liang H, Zhang J, et al. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol 2012;22:125–32.
  • Hachisuka S, Kamei N, Ujigo S, et al. Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 2014;52:596–600.
  • Ratajczak J, Wysoczynski M, Hayek F, et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006;20:1487–95.
  • Mo MH, Chen L, Fu Y, et al. Cell-free circulating miRNA biomarkers in cancer. J Cancer 2012;3:432–48.
  • Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 2012;23:91–7.
  • Redell JB, Moore AN, Ward NH, 3rd, et al. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 2010;27:2147–56.
  • Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PloS One 2011;6:e24145.
  • Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 2012;108:592–8.
  • Sandrow-Feinberg HR, Houle JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Res 2015;1619:12–21.
  • Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 2012;233:447–56.
  • Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008;322:963–6.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20.
  • van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res 2012;110:496–507.
  • Ning B, Gao L, Liu RH, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 2014;10:997–1006.
  • Chorn G, Klein-McDowell M, Zhao L, et al. Single-stranded microRNA mimics. RNA 2012;18:1796–804.
  • Ouyang YB, Lu Y, Yue S, et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 2012;45:555–63.
  • Stenvang J, Petri A, Lindow M, et al. Inhibition of microRNA function by antimiR oligonucleotides. Silence 2012;3:1.
  • Koval ED, Shaner C, Zhang P, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Gen 2013;22:4127–35.
  • Tardivo V, Crobeddu E, Pilloni G, et al. Say "no" to spinal cord injury: is nitric oxide an option for therapeutic strategies? Int J Neurosci 2015;125(2):81–90.
  • Dolbow DR. Exercise following spinal cord injury: physiology to therapy. J Neurorestoratol 2015;3:133–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.