825
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury

, , &
Pages 1124-1135 | Received 22 Nov 2016, Accepted 27 Apr 2017, Published online: 19 May 2017

References

  • Liu J, Kuwabara A, Kamio Y, et al. Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism. Stem Cells 2016;34:2943–55.
  • Zhao E, Jia Y, Wang D, et al. Effect of p65 gene inhibited by siRNA on differentiation of rat marrow mesenchymal stem cells into neurons. Chinese J Appl Physiol 2015;31:254–8.
  • Zeng X, Qiu X-C, Ma Y-H, et al. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 2015;53:184–201.
  • Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, et al. Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol 2015;42:1158–67.
  • Deng K, Lin DL, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol 2015;308:F92–f100. Epub 2014/11/08.
  • Kota DJ, Prabhakara KS, van Brummen AJ, et al. Propranolol and mesenchymal stromal cells combine to treat traumatic brain injury. Stem Cells Trans Med 2016;5:33–44. Epub 2015/11/21.
  • Tang G, Liu Y, Zhang Z, et al. Mesenchymal stem cells maintain blood‐brain barrier integrity by inhibiting Aquaporin‐4 upregulation after cerebral ischemia. Stem Cells 2014;32:3150–62.
  • Cerri S, Greco R, Levandis G, et al. Intracarotid infusion of mesenchymal stem cells in an animal model of Parkinson's disease, focusing on cell distribution and neuroprotective and behavioral effects. Stem Cells Trans Med 2015;4:1073–85.
  • Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016;272:38–49. Epub 2016/07/07.
  • Gennai S, Monsel A, Hao Q, et al. Cell-based therapy for traumatic brain injury. Br J Anaesthesia 2015;115:203–12.
  • Neirinckx V, Marquet A, Coste C, et al. Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice. PloS One 2013;8:e64723. Epub 2013/06/07.
  • Chen A, Siow B, Blamire AM, et al. Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 2010;5:255–66. Epub 2010/09/30.
  • Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 2012;29:1614–25.
  • Zanier ER, Pischiutta F, Riganti L, et al. Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 2014;11:679–95.
  • Donega V, Nijboer CH, van Tilborg G, et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp Neurol 2014;261:53–64. Epub 2014/06/20.
  • Zhao Y, Gibb SL, Zhao J, et al. Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury. Stem Cells 2016;34:1263–72. Epub 2016/02/04.
  • Zhang R, Liu Y, Yan K, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflam 2013;10:106. Epub 2013/08/27.
  • Park HJ, Oh SH, Kim HN, et al. Mesenchymal stem cells enhance alpha-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol 2016;132:685–701. Epub 2016/10/22.
  • D'souza N, Rossignoli F, Golinelli G, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015;13:186.
  • Abumaree MH, Al Jumah MA, Kalionis B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 2013;9:620–41.
  • Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem 2013;114:220–9.
  • Chen H, Min XH, Wang QY, et al. Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep 2015;5:8718.
  • Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P, et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 2014;23:2694–700. Epub 2014/10/12.
  • Steinberg GK, Kondziolka D, Wechsler LR, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke 2016;47(7):1817–24. Epub 2016/06/04.
  • Lublin FD, Bowen JD, Huddlestone J, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 2014;3:696–704. Epub 2015/04/22.
  • Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009;11:897–911. Epub 2009/11/12.
  • Introna M, Lucchini G, Dander E, et al. Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant 2014;20:375–81. Epub 2013/12/11.
  • Reinders ME, Dreyer GJ, Bank JR, et al. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the Neptune study. J Transl Med 2015;13:344. Epub 2015/11/06.
  • Kimmelman J, Hyun I, Benvenisty N, et al. Policy: global standards for stem-cell research. Nature 2016;533:311–3. Epub 2016/05/20.
  • Mounayar M, Kefaloyianni E, Smith B, et al. PI3kalpha and STAT1 interplay regulates human mesenchymal stem cell immune polarization. Stem Cells 2015;33:1892–901.
  • Pati S, Gerber MH, Menge TD, et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS One 2011;6:e25171. Epub 2011/10/08.
  • Bartosh TJ, Ylostalo JH, Bazhanov N, et al. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 2013;31:2443–56. Epub 2013/08/08.
  • Arutyunyan I, Fatkhudinov T, Kananykhina E, et al. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study. Stem Cell Res Therapy 2016;7:46. Epub 2016/03/24.
  • Gu Y, He M, Zhou X, et al. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte. Sci Rep 2016;6:18587. Epub 2016/01/15.
  • Noh MY, Lim SM, Oh KW, et al. Mesenchymal stem cells modulate the functional properties of microglia via TGF-beta secretion. Stem Cells Transl Med 2016;5:1538–49. Epub 2016/07/13.
  • Griffin MD, Elliman SJ, Cahill E, et al. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells 2013;31:2033–41.
  • Giuliani M, Fleury M, Vernochet A, et al. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PloS One 2011;6:e19988. Epub 2011/06/01.
  • Abomaray FM, Al Jumah MA, Kalionis B, et al. Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory phenotype in CD1+ dendritic cells. Stem Cell Rev 2015;11:423–41.
  • Cui R, Rekasi H, Hepner-Schefczyk M, et al. Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Res Therapy 2016;7:88. Epub 2016/07/09.
  • Huang W, Lv B, Zeng H, et al. Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. J Cell Physiol 2015;230:2461–75.
  • Zheng G, Ge M, Qiu G, et al. Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells Int 2015;2015:989473.
  • Hattori H, Ishihara M. Altered protein secretions during interactions between adipose tissue-or bone marrow-derived stromal cells and inflammatory cells. Stem Cell Res Therapy 2015;6:70.
  • Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem 2012;113:1460–9.
  • Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 2013;61:112–20. Epub 2012/08/01.
  • Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PloS One 2012;7:e35036. Epub 2012/04/13.
  • Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015;1628:288–97. Epub 2015/09/06.
  • Baby N, Patnala R, Ling EA, Dheen ST. Nanomedicine and its application in treatment of microglia-mediated neuroinflammation. Curr Med Chem 2014;21:4215–26. Epub 2014/07/22.
  • Bedi SS, Smith P, Hetz RA, et al. Immunomagnetic enrichment and flow cytometric characterization of mouse microglia. J Neurosci Methods 2013;219:176–82. Epub 2013/08/10.
  • Ariel A, Timor O. Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis. J Pathol 2013;229:250–63. Epub 2012/09/26.
  • Su P, Zhang J, Wang D, et al. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 2016;319:155–67. Epub 2016/02/02.
  • Turtzo LC, Lescher J, Janes L, et al. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflam 2014;11:82.
  • Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 2014;46:e70.
  • Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 2012;30:2283–96.
  • Arnold CE, Whyte CS, Gordon P, et al. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo. Immunology 2014;141:96–110. Epub 2013/10/04.
  • Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 2015;11:56–64.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–69. Epub 2008/11/26.
  • Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014;40:274–88. Epub 2014/02/18.
  • Hume DA. The many alternative faces of macrophage activation. Front Immunol 2015;6:370. Epub 2015/08/11.
  • Pepe G, Calderazzi G, De Maglie M, et al. Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. J Neuroinflam 2014;11:211. Epub 2015/01/01.
  • Kudlik G, Hegyi B, Czibula A, et al. Mesenchymal stem cells promote macrophage polarization toward M2b-like cells. Exp Cell Res 2016;348:36–45. Epub 2016/09/01.
  • Parsa R, Andresen P, Gillett A, et al. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice. Diabetes 2012;61:2881–92.
  • Ohlsson SM, Linge CP, Gullstrand B, et al. Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization. Clin Immunol 2014;152:10–9. Epub 2014/03/19.
  • Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013;13:709–21.
  • Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 2016;165:668–78. Epub 2016/04/12.
  • Okabe Y, Medzhitov R. Wormhole travel for macrophages. Cell 2016;165:518–9. Epub 2016/04/23.
  • Payne NL, Sun G, McDonald C, et al. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain Behav Immun 2013;30:103–14. Epub 2013/02/02.
  • Hegyi B, Kornyei Z, Ferenczi S, et al. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2014;23:2600–12.
  • Taetzsch T, Levesque S, McGraw C, et al. Redox regulation of NF-kappaB p50 and M1 polarization in microglia. Glia 2015;63:423–40. Epub 2014/10/22.
  • Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 2015;11:56–64.
  • Huang C, Wang J, Lu X, et al. Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IkappaB-alpha-NF-kappaB signals. Neurosci Lett 2016;619:34–42. Epub 2016/02/18.
  • Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 2013;31:2042–6.
  • Schumacher M, Mattern C, Ghoumari A, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014;113:6–39.
  • Liu Y, Zhang R, Yan K, et al. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflam 2014;11:135.
  • Xu Y, Shi T, Xu A, Zhang L. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J Cell Mole Med 2016;20:1203–13. Epub 2016/02/26.
  • Xie L, Mao M, Zhou L, Zhang L. Signal factors secreted by 2D and spheroid mesenchymal stem cells and by cocultures of mesenchymal stem cells derived microvesicles and retinal photoreceptor neurons. Stem Cells Int 2017;2017:2730472.
  • Ulivi V, Tasso R, Cancedda R, Descalzi F. Mesenchymal stem cell paracrine activity is modulated by platelet lysate: induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells Dev 2014;23:1858–69.
  • Yasui M, Tamura Y, Minami M, et al. The prostaglandin E2 receptor EP4 regulates obesity-related inflammation and insulin sensitivity. PloS One 2015;10:e0136304.
  • Luan B, Yoon YS, Le Lay J, et al. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci U S A 2015;112:15642–7. Epub 2015/12/09.
  • Diaz MF, Vaidya AB, Evans SM, et al. Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells 2017;35(5):1259–72. Epub 2017/03/05.
  • Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1beta and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Progr 2015;31:1058–70. Epub 2015/05/12.
  • Barminko JA, Nativ NI, Schloss R, Yarmush ML. Fractional factorial design to investigate stromal cell regulation of macrophage plasticity. Biotechnol Bioeng 2014;111:2239–51. Epub 2014/06/04.
  • Na YR, Jung D, Yoon BR, et al. Endogenous prostaglandin E2 potentiates anti-inflammatory phenotype of macrophage through the CREB-C/EBP-beta cascade. Eur J Immunol 2015;45:2661–71.
  • Qi Y, Jiang D, Sindrilaru A, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol 2014;134:526–37. Epub 2013/08/08.
  • Park S, Choi JJ, Park BK, et al. Pheophytin a and chlorophyll a suppress neuroinflammatory responses in lipopolysaccharide and interferon-gamma-stimulated BV2 microglia. Life Sci 2014;103:59–67.
  • Chen M, Li X, Zhang X, et al. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J Neuroinflam 2015;12:61. Epub 2015/04/19.
  • Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 2011;118:330–8. Epub 2011/05/10.
  • Lopez-Rodriguez AB, Acaz-Fonseca E, Giatti S, et al. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice. Psychoneuroendocrinology 2015;56:1–11.
  • Meffre D, Labombarda F, Delespierre B, et al. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 2013;231:111–24. Epub 2012/12/06.
  • Goldstein FC, Caveney AF, Hertzberg VS, et al. Very early administration of progesterone does not improve neuropsychological outcomes in subjects with moderate to severe traumatic brain injury. J Neurotraum 2016;34(1):115–20. Epub 2016/03/15.
  • Labombarda F, Jure I, Gonzalez S, et al. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 2015;154:274–84. Epub 2015/09/16.
  • Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie 2013;95:2212–21. Epub 2013/07/03.
  • Aversa S, Ondolo C, Abbadessa G, et al. Steroid resistance in nasal polyposis: role of glucocorticoid receptor and TGF-beta1. Rhinology 2012;50:427–35. Epub 2012/11/30.
  • Chantong B, Kratschmar DV, Nashev LG, et al. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflam 2012;9:260. Epub 2012/11/30.
  • Barrachina L, Remacha AR, Romero A, et al. Priming equine bone marrow-derived mesenchymal stem cells with proinflammatory cytokines: implications in immunomodulation-immunogenicity balance, cell viability, and differentiation potential. Stem Cells Dev 2017;26:15–24. Epub 2016/11/05.
  • Spaeth EL, Kidd S, Marini FC. Tracking inflammation-induced mobilization of mesenchymal stem cells. Meth Mole Biol. 2012;904:173–90. Epub 2012/08/15.
  • Ciavarella C, Fittipaldi S, Pedrini S, et al. In vitro alteration of physiological parameters do not hamper the growth of human multipotent vascular wall-mesenchymal stem cells. Front Cell Dev Biol 2015;3:36.
  • Toupet K, Maumus M, Luz-Crawford P, et al. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PloS One 2015;10:e0114962.
  • Wu B, Sondag G, Malcuit C, et al. Macrophage-associated osteoactivin/gpnmb mediates mesenchymal stem cell survival, proliferation, and migration via a CD44-dependent mechanism. J Cell Biochem 2015;117(7):1511–21.
  • Andriessen TM, Horn J, Franschman G, et al. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: a prospective multicenter study. J Neurotraum 2011;28:2019–31. Epub 2011/07/27.
  • Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013;9:231–6.
  • Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7:728–41. Epub 2008/07/19.
  • Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotraum 2007;24:927–35. Epub 2007/06/30.
  • Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017;80:6–15. Epub 2016/09/23.
  • Simon DW, McGeachy MJ, Bayir H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 2017;13(3):171–91. Epub 2017/02/12.
  • Balu R. Inflammation and immune system activation after traumatic brain injury. Curr Neurol Neurosci Rep 2014;14:484. Epub 2014/08/21.
  • Hinson HE, Rowell S, Schreiber M. Clinical evidence of inflammation driving secondary brain injury: a systematic review. J Trauma Acute Care Surg 2015;78:184–91. Epub 2014/12/30.
  • Benarroch EE. Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 2013;81:1079–88. Epub 2013/08/16.
  • Czigner A, Mihaly A, Farkas O, et al. Kinetics of the cellular immune response following closed head injury. Acta Neurochir 2007;149:281–9. Epub 2007/02/09.
  • Watanabe J, Shetty AK, Hattiangady B, et al. Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 2013;59:86–99.
  • Hellewell S, Semple BD, Morganti-Kossmann MC. Therapies negating neuroinflammation after brain trauma. Brain Res 2015.
  • Schober ME, Requena DF, Block B, et al. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury. J Neurotraum 2014;31(4):358–69. Epub 2013/08/27.
  • Webster KM, Wright DK, Sun M, et al. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflam 2015;12:238. Epub 2015/12/20.
  • Lee M, Sparatore A, Del Soldato P, et al. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 2010;58:103–13. Epub 2009/06/23.
  • Ng SY, Semple BD, Morganti-Kossmann MC, Bye N. Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice. J Neurotraum 2012;29:1410–25. Epub 2012/01/21.
  • Liu WC, Wen L, Xie T, et al. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a metaanalysis of randomized controlled trials. J Neurosurg. Published online 2016 July 1:1–8. Epub 2016/07/02.
  • Margulies SS, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. J Neurotraum 2009;26:925–39.
  • Tian C, Wang X, Wang X, et al. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant 2013;11:176–81.
  • Hart BA, den Dunnen WF. Commentary on special issue: CNS diseases and the immune system. J Neuroimmune Pharmacol 2013;8:757–9. Epub 2013/06/12.
  • Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337–41.
  • Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013;4:18. Epub 2013/03/06.
  • Marin MA, de Lima S, Gilbert HY, et al. Reassembly of excitable domains after CNS Axon regeneration. J Neurosci 2016;36(35):9148–60.
  • Wang Z, Wang Y, Wang Z, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 2015;33:456–67. Epub 2014/10/28.
  • Tu Y, Chen C, Sun HT, et al. Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury. J Neurotraum 2012;29:2393–403. Epub 2012/06/05.
  • Stucky EC, Schloss RS, Yarmush ML, Shreiber DI. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 2015;17:1353–64. Epub 2015/07/27.
  • Zhou L-N, Zhang J-W, Liu X-L, Zhou L-H. Co-graft of bone marrow stromal cells and Schwann cells into acellular nerve scaffold for sciatic nerve regeneration in rats. J Oral Maxil Surg 2015;73:1651–60.
  • Walker PA, Jimenez F, Gerber MH, et al. Effect of needle diameter and flow rate on rat and human mesenchymal stromal cell characterization and viability. Tissue Eng Part C 2010;16:989–97. Epub 2009/12/17.
  • Moll G, Geissler S, Catar R, et al. Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol 2016;951:77–98. Epub 2016/11/12.
  • Yarborough M, Tempkin T, Nolta J, Joyce N. The complex ethics of first in human stem cell clinical trials. AJOB Neurosci 2012;3(2):14–23. Epub 2012/01/01.
  • Ke CC, Liu RS, Suetsugu A, et al. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PloS One 2013;8:e69658. Epub 2013/08/13.
  • Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006;80:267–74. Epub 2005/10/11.
  • Dunnett SB, Rosser AE. Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiol Dis 2014;61:79–89. Epub 2013/05/22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.