168
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Persistent effects of the orexin-1 receptor antagonist SB-334867 on naloxone precipitated morphine withdrawal symptoms and nociceptive behaviors in morphine dependent rats

, , ORCID Icon, , &
Pages 67-76 | Received 27 Dec 2019, Accepted 20 Jul 2020, Published online: 11 Aug 2020

References

  • Borgland SL, Taha SA, Sarti F, et al. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49(4):589–601.
  • Georgescu D, Zachariou V, Barrot M, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23(8):3106–3111.
  • Sharf R, Sarhan M, DiLeone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry. 2008;64(3):175–183.
  • De Lecea L, Kilduff T, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–327.
  • Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–181.
  • Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res. 2010;1314:103–111.
  • Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 2006;29(10):571–577.
  • James M, Yeoh J, Graham B, et al. Insights for developing pharmacological treatments for psychostimulant relapse targeting hypothalamic peptide systems. J Addict Res Ther. 2013;S4(008).
  • Khoo SY-S, Brown RM. Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA? CNS Drugs. 2014;28(8):713–730.
  • Mahler SV, Moorman DE, Smith RJ, et al. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci. 2014;17(10):1298–1303.
  • Mahler SV, Smith RJ, Moorman DE, et al. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res. 2012;19879–121.
  • Peyron C, Tighe DK, Van Den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.
  • Smart D. Orexins: a new family of neuropeptides. Br J Anaesth. 1999;83(5):695–697.
  • Van Den Pol AN. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci. 1999;19(8):3171–3182.
  • Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–585.
  • Stoyanova II, Rutten WL, Le Feber J. Orexin-A and orexin-B during the postnatal development of the rat brain. Cell Mol Neurobiol. 2010;30(1):81–89.
  • Van Den Pol AN, Patrylo PR, Ghosh PK, et al. Lateral hypothalamus: early developmental expression and response to hypocretin (orexin). J Comp Neurol. 2001;433(3):349–363.
  • Shibata S, Oomura Y, Kita H. Ontogenesis of glucose sensitivity in the rat lateral hypothalamus: a brain slice study. Developmental Brain Research. 1982;5(1):114–117.
  • Fisher RS, Almli CR. Postnatal development of sensory influences on lateral hypothalamic neurons of the rat. Dev Brain Res. 1984;12(1):55–75.
  • Arami MK, Hajizadeh S, Semnanian S. Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons. Brain Res. 2016;1648(Pt A):365–371.
  • Arami MK, Semnanian S, Javan M, et al. Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat. Physiology and Pharmacology. 2011;14(4):337–348.
  • Fadel J, Deutch A. Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111(2):379–387.
  • Ahmadi-Soleimani SM, Azizi H, Gompf HS, et al. Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: a site specific focus. Neuropharmacology. 2017;126:25–37.
  • Mousavi Y, Azizi H, Mirnajafi-Zadeh J, et al. Blockade of orexin type-1 receptors in locus coeruleus nucleus attenuates the development of morphine dependency in rats. Neurosci Lett. 2014;578:90–94.
  • Rezaei Z, Kourosh-Arami M, Azizi H, et al. Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neurosci Lett. 2020;724:134875.
  • Babasafari M, Kourosharami M, Behman J, et al. Alteration of Phospholipase C expression in rat visual cortical neurons by chronic blockade of orexin receptor 1. Int J Pept Res Ther. 2019;26:1485–1491.
  • Kourosh Arami M, Sohya K, Sarihi A. Reciprocal homosynaptic and heterosynaptic long-term plasticity of corticogeniculate projection neurons in layer VI of the mouse visual cortex. J Neurosci. 2013;33(18):7787–7798.
  • Azizi H, Mirnajafi-Zadeh J, Rohampour K, et al. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett. 2010;482(3):255–259.
  • Kourosh-Arami M, Javan M, Semnanian S. Inhibition of orexin receptor 1 contributes to the development of morphine dependence via attenuation of cAMP response element-binding protein and phospholipase Cβ3. J Chem Neuroanat. 2020;108:101801.
  • Erami E, Azhdari-Zarmehri H, Rahmani A, et al. Blockade of orexin receptor 1 attenuates the development of morphine tolerance and physical dependence in rats. Pharmacol Biochem Behav. 2012;103(2):212–219.
  • Zarmehri HA, Semnanian S, Fathollahi Y, et al. Intra-periaqueductal gray matter microinjection of orexin-A decreases formalin-induced nociceptive behaviors in adult male rats. J Pain. 2011;12(2):280–287.
  • Mobarakeh JI, Takahashi K, Sakurada S, et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides. 2005;26(5):767–777.
  • Badawy AB, Evans C, Evans M. Production of tolerance and physical dependence in the rat by simple administration of morphine in drinking water. Br J Pharmacol. 1982;75(3):485–491.
  • Rasmussen K. Afferent effects on locus coeruleus in opiate withdrawal. Prog Brain Res. 1991;88:207–216.
  • Leung C, Dai S, Ogle C. Rapid induction of dependence to morphine in rats. Neuropharmacology. 1986;25(3):305–307.
  • Maldonado R, Stinus L, Gold L, et al. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther. 1992;261(2):669–677.
  • Martindale J, Bland-Ward P, Chessell I. Inhibition of C-fibre mediated sensory transmission in the rat following intraplantar formalin. Neurosci Lett. 2001;316(1):33–36.
  • Zhu H, Zhou W. Discharge activities of neurons in the nucleus paragigantocellularis during the development of morphine tolerance and dependence: a single unit study in chronically implanted rats. Eur J Pharmacol. 2010;636(1–3):65–72.
  • Abbott F, Franklin K, Ludwick R, et al. Apparent lack of tolerance in the formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol Biochem Behav. 1981;15(4):637–640.
  • Ranjbar-Slamloo Y, Azizi H, Fathollahi Y, et al. Orexin receptor type-1 antagonist SB-334867 inhibits the development of morphine analgesic tolerance in rats. Peptides. 2012;35(1):56–59.
  • Upadhya MA, Dandekar MP, Kokare DM, et al. Involvement of neuropeptide Y in the acute, chronic and withdrawal responses of morphine in nociception in neuropathic rats: behavioral and neuroanatomical correlates. Neuropeptides. 2009;43(4):303–314.
  • Azhdari-Zarmehri H, Esmaeili M-H, Sofiabadi M, et al. Orexin receptor type-1 antagonist SB-334867 decreases morphine-induced antinociceptive effect in formalin test. Pharmacol Biochem Behav. 2013;112:64–70.
  • Heidary N, Sahraei H, Afarinesh MR, et al. Investigating the inhibition of NMDA glutamate receptors in the basolateral nucleus of the amygdala on the pain and inflammation induced by formalin in male Wistar rats. Front Biol. 2018;13(2):149–155.
  • Arami MK. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia. Iran J Basic Med Sci. 2015;18(10):989.
  • Malakouti SM, Kourosh AM, Sarihi A, et al. Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male wistar rats in response to hypothermia. Iran Biomed J. 2008;12(4):203–208.
  • Mason P, Gao K. Raphe magnus serotonergic neurons tonically modulate nociceptive transmission. Pain Forum. 1998;7(3):143–150.
  • Kourosh Arami M, Sarihi A, Behzadi G. The effect of nucleus tractus solitarius nitric oxidergic neurons on blood pressure in diabetic rats. Iran Biomed J. 2006;10(1):15–19.
  • Yang Bai, Ying-Biao Chen, Xin-Tong Qiu. Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World J Gastroenterol. 2019;25(40):6077–6093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.