158
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Interleukin-10 restores glutamate receptor-mediated Ca2+-signaling in brain circuits under loss of Sip1 transcription factor

, , , & ORCID Icon
Pages 114-125 | Received 07 Feb 2020, Accepted 20 Jul 2020, Published online: 06 Aug 2020

References

  • Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci. 2013;14:6690–6719.
  • Garavelli L, Mainardi PC. Mowat-Wilson syndrome. Orphanet J Rare Dis. 2007;2:42.
  • Wilson M, Mowat D, Dastot-Le Moal F, et al. Further delineation of the phenotype associated with heterozygous mutations in ZFHX1B. Am J Med Genet A. 2003;119A:257–265.
  • Zweier C, Temple I, Beemer F, et al. Characterisation of deletions of the ZFHX1B region and genotype-phenotype analysis in Mowat-Wilson syndrome. J Med Genet. 2003;40:601–605.
  • Ivanovski I, Djuric O, Caraffi SG, et al. Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care. Genet Med. 2018;20:965–975.
  • van den Berghe V, Stappers E, Vandesande B, et al. Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron. 2013;77:70–82.
  • Turovskaya MV, Babaev AA, Zinchenko VP, et al. Sip-1 mutation causes a disturbance in activity of NMDA- and AMPA-, but not kainate receptors of neurons in cerebral cortex. Neurosci Lett. 2017;650:180–186.
  • Turovsky EA, Babaev AA, Tarabykin VS, et al. Sip1 mutation suppresses the resistance of cerebral cortex neurons to hypoxia through the disturbance of mechanisms of hypoxic preconditioning. Biochem Moscow Suppl Ser A. 2017;11:330–337.
  • Turovskaya MV, Zinchenko VP, Babaev AA, et al. Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10. Arch Biochem Biophys. 2018;654:126–135.
  • Berridge MJ. Elementary and global aspects of calcium signaling. J Exp Biol. 1997;200:315–319.
  • Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature. 1998;395:645–648.
  • Ichikawa M, Muramoto K, Kobayashi K, et al. Formation and maturation of synapses in primary cultures of rat cerebral cortical cells: an electron microscopic study. Neurosci Res. 1993;16:95–103.
  • Wang X, Gruenstein EI. Mechanism of synchronized Ca2+ oscillations in cortical neurons. Brain Res. 1997;767:239–249.
  • Niedermeyer E, Lopes Da Silva FH. Electroencephalography: basic principles, clinical applications, and related fields. Philadelphia (PA): Lippincott Williams & Wilkins; 2005.
  • Jefferys JGR, Jiruska P, de Curtis M, et al. Limbic network synchronization and temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
  • Higashi Y, Maruhashi M, Nelles L, et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis. 2002;32:82–84.
  • Turovskaya MV, Gaidin SG, Vedunova MV, et al. BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons. Neurosci Bull. 2020;36:733–760.
  • Gaidin SG, Turovskaya MV, Gavrish MS, et al. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci. 2020;130:363–383.
  • Turovsky EA, Turovskaya MV, Gaidin SG, et al. Cytokine IL-10, activators of PI3-kinase, agonists of α2 adrenoreceptor and antioxidants prevent ischemia-induced cell death in rat hippocampal cultures. Arch Biochem Biophys. 2017;615:35–43.
  • Turovskaya MV, Gaidin SG, Mal'tseva VN, et al. Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci. 2019;96:10–24.
  • Zinchenko VP, Turovsky EA, Turovskaya MV, et al. NAD causes dissociation of neural networks into subpopulations of neurons by inhibiting the network synchronous hyperactivity evoked by ammonium ions. Biochem Moscow Suppl Ser A. 2016;10:118–125.
  • Zinchenko VP, Turovskaya MV, Teplov IY, et al. The role of parvalbumin-containing interneurons in the regulation of spontaneous synchronous activity of brain neurons in culture. Biophysics. 2016;61:85–93.
  • Cho Y-J, Kim H, Kim W-J, et al. Trafficking patterns of NMDA and GABAA receptors in a Mg2+-free cultured hippocampal neuron model of status epilepticus. Epilepsy Res. 2017;136:143–148.
  • Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci. 2013;14:18284–18318.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–408.
  • Zhang CL, Heinemann U. Effects of the triazole derivative loreclezole (R72063) on stimulus induced ionic and field potential responses and on different patterns of epileptiform activity induced by low magnesium in rat entorhinal cortex-hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol. 1992;346:581–587.
  • Williams S, Hamil N, Abramov AY, et al. Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience. 2015;303:160–165.
  • Schwartzkroin PA, Prince DA. Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res. 1980;183:61–76.
  • Turovsky EA, Blinova EV, Semeleva EV, et al. Aminoethane sulfonic acid magnesium salt inhibits Ca2+ entry through NMDA receptor ion channel in vitro. Bull Exp Biol Med. 2018;166:39–42.
  • Friel DD, Tsien RW. Phase-dependent contributions from Ca2+ entry and Ca2+ release to caffeine-induced [Ca2+]i oscillations in bullfrog sympathetic neurons. Neuron. 1992;8:1109–1125.
  • Muller W, Swandulla D. Synaptic feedback excitation has hypothalamic neural networks generate quasirhythmic burst activity. J Neurophysiol. 1995;73:855–861.
  • van den Pol AN, Finkbeiner SM, Cornell-Bell AH. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 1992;12:2648–2664.
  • Ogura A, Iijima T, Amano T, et al. Optical monitoring of excitatory synaptic activity between cultured hippocampal neurons by a multi-site Ca2+ fluorometry. Neurosci Lett. 1987;78:69–74.
  • Lawrie AM, Graham ME, Thorn P, et al. Synchronous calcium oscillations in cerebellar granule cells in culture mediated by NMDA receptors . Neuroreport. 1993;4:539–542.
  • Dolgacheva LP, Turovskaya MV, Dynnik VV, et al. Angiotensin II activates different calcium signaling pathways in adipocytes. Arch Biochem Biophys. 2016;593:38–49.
  • Fridlyand LE, Tamarina N, Philipson LH. Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms. Am J Physiol Endocrinol Metab. 2010;299:517–532.
  • Murphy TH, Blatter LA, Wier WG, et al. Spontaneous synchronous synaptic calcium transients in cultured cortical neurons. J Neurosci. 1992;12:4834–4845.
  • Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21:13–26.
  • Smedler E, Uhlén P. Frequency decoding of calcium oscillations. Biochim Biophys Acta. 2014;1840:964–969.
  • Chang JY, Parra-Bueno P, Laviv T, et al. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. Neuron. 2017;94:800–808.
  • Johansen T, Krabbe C, Schmidt SI, et al. Comparative analysis of spontaneous and stimulus-evoked calcium transients in proliferating and differentiating human midbrain-derived stem cells. Stem Cells Int. 2017;2017:9605432.
  • Pacico N, Meur AM. New in vitro phenotypic assay for epilepsy: fluorescent measurement of synchronized neuronal calcium oscillations. PLoS One. 2014;9:e84755.
  • Miquelajauregui A, Van de Putte T, Polyakov A, et al. Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proc Natl Acad Sci USA. 2007;104:12919–12924.
  • Fuortes MG, Faria LC, Merlin LR. Impact of protein kinase C activation on epileptiform activity in the hippocampal slice. Epilepsy Res. 2008;82:38–45.
  • Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013;7:103.
  • Bodmer D, Levine-Wilkinson S, Richmond A, et al. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci. 2009;29:7569–7581.
  • Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res. 2018;146:9–16.
  • Huang C, Fu X-H, Zhou D, et al. The role of Wnt/β-Catenin signaling pathway in disrupted hippocampal neurogenesis of temporal lobe epilepsy: a potential therapeutic target? Neurochem Res. 2015;40:1319–1332.
  • Cerpa W, Godoy JA, Alfaro I, et al. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem. 2008;283:5918–5927.
  • Varela-Nallar L, Grabowski CP, Alfaro IE, et al. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev. 2009;4:41.
  • Avila ME, Sepúlveda FJ, Burgos CF, et al. Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons. J Biol Chem. 2010;285:18939–18947.
  • Chen J, Park CS, Tang SJ. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem. 2006;281:11910–11916.
  • Cerpa W, Farias GG, Godoy JA, et al. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener. 2010;5:3.
  • Varela-Nallar L, Alfaro IE, Serrano FG, et al. Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci USA. 2010;107:21164–21169.
  • Turovskaya MV, Turovsky EA, Kononov AV, et al. Short-term hypoxia induces a selective death of GABAergic neurons. Biochem Moscow Suppl Ser A. 2014;8:125–135.
  • Levin SG, Sirota NP, Nenov MN, et al. Interleukin-10 and PD150606 modulate expression of AMPA receptor GluA1 and GluA2 subunits under hypoxic conditions. Neuroreport. 2018;29:84–91.
  • Oderup C, LaJevic M, Butcher EC. Canonical and noncanonical Wnt proteins program dendritic cell responses for tolerance. J Immunol. 2013;190:6126–6134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.