179
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of anti-Parkinson activity of dicyclomine 

, , , , , & show all
Pages 338-351 | Received 13 Nov 2019, Accepted 19 Aug 2020, Published online: 11 Sep 2020

References

  • Prakash K, Bannur B, Chavan MD, et al. Neuroanatomical changes in Parkinson’s disease in relation to cognition: an update. J Adv Pharm Technol Res. 2016;7(4):123–126.
  • Moisan F, Kab S, Mohamed F, et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(9):952–957.
  • Zaidi AA, Khan TA, Shakir L, et al. Evaluation of C. cassia effectiveness in behavioral modulation of haloperidol induced Parkinson’s disease (mice model). Br J Pharm Res. 2016;6:1–7.
  • DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T. 2015;40(8):504–532.
  • Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–474.
  • Sunday OP, Adekunle MF, Temitope OT, et al. Alteration in antioxidants level and lipid peroxidation of patients with neurodegenerative diseases {Alzheimer’s disease and Parkinson disease}. Int J Nutr Pharmacol Neurol Dis. 2014;4(3):146.
  • Grăciun EC, Dronca E, Leach NV. Antioxidant enzymes activity in subjects with Parkinson’s disease under L-DOPA therapy. Human Vet Med. 2016;8(2):124–127.
  • Mallajosyula JK, Kaur D, Chinta SJ, et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One. 2008;3(2):e1616.
  • Youdim M, Collins G, Sandler M, et al. Biological sciences: human brain monoamine oxidase: multiple forms and selective inhibitors. Nature. 1972;236(5344):225–228.
  • Youdim MB, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci. 2005;26(1):27–35.
  • López-Sendón J, Mena MA, de Yébenes JG. Drug-induced parkinsonism. Expert Opin Drug Saf. 2013;12(4):487–496.
  • McCormack AL, Atienza JG, Johnston LC, et al. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem. 2005;93(4):1030–1037.
  • Corwin C. Insights into the cyclooxygenase pathway in a progressive rat model of Parkinson’s disease induced by prostaglandin J2: protection with ibuprofen [dissertation]. New York (NY): City University of New York; 2018.
  • Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33–39.
  • Miyakawa T, Yamada M, Duttaroy A, et al. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci. 2001;21(14):5239–5250.
  • Shin SS, Dixon CE. Alterations in cholinergic pathways and therapeutic strategies targeting cholinergic system after traumatic brain injury. J Neurotrauma. 2015;32(19):1429–1440.
  • Veeraragavan S, Bui N, Perkins JR, et al. Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology. 2011;217(1):143–151.
  • Xiang Z, Thompson AD, Jones CK, et al. Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson’s disease. J Pharmacol Exp Ther. 2012;340(3):595–603.
  • Selvakumar GP, Anandhan A, Manivasagam T. Neurotoxicity associated with neuroleptic haloperidol induced tardive dyskinesia in albino mice: protective role of morin. J Pharm Res. 2012;5(7):3633–3639.
  • Ishola IO, Akinyede A, Adeluwa T, et al. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis. 2018;33(5):1493–1500.
  • Banu Z, Fatima SJ, Fatima A, et al. Phytochemical evaluation and pharmacological screening of anti-Parkinson’s activity of Allium sativum in Swiss/albino mice. IOSR J Pharm. 2016;6(6):1–12.
  • Pires J, Bonikovski V, Futuro-Neto H. Acute effects of selective serotonin reuptake inhibitors on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res. 2005;38(12):1867–1872.
  • Deacon RM. Measuring motor coordination in mice. J Vis Exp. 2013;4(75):e2609.
  • Prakash J, Yadav SK, Chouhan S, et al. Synergistic effect of Mucuna pruriens and Withania somnifera in a paraquat induced Parkinsonian mouse model. Adv Biosci Biotechnol. 2013;4(11):1–9.
  • Kim J-B, Kopalli SR, Koppula S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop J Pharm Res. 2016;15(4):765–772.
  • Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;1(96):e52434.
  • Sestakova N, Puzserova A, Kluknavsky M, et al. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol. 2013;6(3):126–135.
  • Nade V, Shendye N, Kawale L, et al. Protective effect of nebivolol on reserpine-induced neurobehavioral and biochemical alterations in rats. Neurochem Int. 2013;63(4):316–321.
  • Yadav AV, Nade VS. Anti-dopaminergic effect of the methanolic extract of Morus alba L. leaves. Indian J Pharmacol. 2008;40(5):221–226.
  • Deacon R, Brook R, Meyer D, et al. Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2. Physiol Behav. 2006;87(4):723–733.
  • Takao K, Miyakawa T. Light/dark transition test for mice. J Vis Exp. 2006;1(1):104.
  • Manikkoth S, Sequeira M, Joy AE, et al. Assessment of brain dopamine levels to evaluate the role of Tylophora indica ethanolic extract on alcohol induced anxiety in Wistar albino rats. J Young Pharm. 2016;8(2):91–95.
  • Bhangale JO, Acharya SR. Anti-Parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. Adv Pharmacol Sci. 2016;2016:9436106.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Bais S, Gill N, Kumar N. Neuroprotective effect of Juniperus communis on chlorpromazine induced Parkinson disease in animal model. Chin J Biol. 2015;2015:542542.
  • Rahman H, Eswaraiah M. Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice: a review. Pharmatutor Art. 2008;8:1244.
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
  • Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318–324.
  • Kulikov A, Bazovkina D, Kondaurova E, et al. Genetic structure of hereditary catalepsy in mice. Genes Brain Behav. 2008;7(4):506–512.
  • Shiotsuki H, Yoshimi K, Shimo Y, et al. A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 2010;189(2):180–185.
  • Pennanen L, Wolfer DP, Nitsch R, et al. Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice. Genes Brain Behav. 2006;5(5):369–379.
  • Rosic G, Joksimovic J, Selakovic D, et al. Anxiogenic effects of chronic exposure to nandrolone decanoate (ND) at supraphysiological dose in rats: a brief report. Neuroendocrinol Lett. 2014;35(703):10.
  • Takao K, Miyakawa T. Light/dark transition test for mice. J Vis Exp. 2006;1(1):e104.
  • Surendran S, Rajasankar S. Parkinson’s disease: oxidative stress and therapeutic approaches. Neurol Sci. 2010;31(5):531–540.
  • Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–4911.
  • Jain A, Mårtensson J, Stole E, et al. Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA. 1991;88(5):1913–1917.
  • Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol. 2014;5:151.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.
  • Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci. 2018;12(3):88–93.
  • Soltaninejad K, Kebriaeezadeh A, Minaiee B, et al. Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Hum Exp Toxicol. 2003;22(8):417–423.
  • Kowalczuk K, Stryjecka-Zimmer M, editors. The influence of oxidative stress on the level of malondialdehyde (MDA) in different areas of the rabbit brain. Ann Univ Mariae Curie Sklodowska Med. 2002;57(2):160–164.
  • Huang X, Xiaokaiti Y, Yang J, et al. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Neuropharmacology. 2018;143:176–185.
  • Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5(12):1403–1409.
  • Scatton B, Javoy-Agid F, Rouquier L, et al. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res. 1983;275(2):321–328.
  • Lloyd KG. CNS compensation to dopamine neuron loss in Parkinson’s disease. In: Messiha FS, Kenny AD, editors. Parkinson’s disease. Advances in experimental medicine and biology. New York (NY): Springer; 1977. p. 255–266.
  • Kumar A, Singh BK, Ahmad I, et al. Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res. 2012;1438:48–64.
  • Kumar MJ, Nicholls DG, Andersen JK. Oxidative α-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson’s disease. J Biol Chem. 2003;278(47):46432–46439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.