449
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Differential expression and significance of miRNAs in plasma extracellular vesicles of patients with Parkinson’s disease

, , , , &
Pages 673-688 | Received 08 Apr 2020, Accepted 07 Sep 2020, Published online: 26 Oct 2020

References

  • Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–362.
  • Yang F, Johansson ALV, Pedersen NL, et al. Socioeconomic status in relation to Parkinson’s disease risk and mortality: a population-based prospective study. Medicine (Baltimore)). 2016;95(30):e4337.
  • Chuang CS, Su HL, Lin CL, et al. Risk of Parkinson disease after organophosphate or carbamate poisoning. Acta Neurol Scand. 2017;136(2):129–137.
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–1601.
  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–376.
  • Simpson J, Chatzidamianos G, Fletcher I, et al. A new scale measuring adaptive perceived control for people with Parkinson’s: initial construction and further validation. J Neurol Sci. 2018;391:77–83.
  • Hess CW, Okun MS. Diagnosing Parkinson disease. Continuum. 2016;22(4):1047–1063.
  • Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl AcadSci USA. 2014;111(41):14888–14893.
  • Schneider A, Simons M. Exosomes: vesicular carriers for intercellular commol/Lunication in neurodegenerative disorders. Cell Tissue Res. 2013;352(1):33–47.
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.
  • Soreq L, Salomonis N, Bronstein M, et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci. 2013;6:10.
  • Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One. 2011;6(10):e25443.
  • Hoss AG, Labadorf A, Beach TG, et al. microRNA profiles in Parkinson’s disease prefrontal cortex. Front Aging Neurosci. 2016;8:36.
  • Ding H, Huang Z, Chen M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord. 2016;22:68–73.
  • Ma W, Li Y, Wang C, et al. Serum miR-221 serves as a biomarker for Parkinson's disease. Cell Biochem Funct. 2016;34(7):511–515.
  • Burgos K, Malenica I, Metpally R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One. 2014;9(5):e94839.
  • Park SH, Goo JM, Jo CH. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5(1):11–18.
  • Meretoja TJ, Andersen KG, Bruce J, et al. Clinical prediction model and tool for assessing risk of persistent pain after breast cancer surgery. J Cin Oncol. 2017;35(15):1660–1667.
  • Heringlake M, Charitos EI, Erber K, et al. Preoperative plasma growth-differentiation factor-15 for prediction of acute kidney injury in patients undergoing cardiac surgery. Crit Care. 2016;20(1):317.
  • Matoušková P, Hanousková B, Skálová L. MicroRNAs as potential regulators of glutathione peroxidases expression and their role in obesity and related pathologies. Int J Mol Sci. 2018;19:1199.
  • ElHefnawi M, Soliman B, Abu-Shahba N, et al. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinformatics. 2013;11(6):354–367.
  • Kosciuczuk EM, Mehrotra S, Saleiro D, et al. Sirtuin 2-mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. J Biol Chem. 2018;294:827–837.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology, the gene ontology consortium. Nat Genet. 2000;25(1):25–29.
  • Wu J, Mao X, Cai T, et al. KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 2006;34:W720–W72 4.
  • Ai C, Kong L. CGPS: a machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics. 2018;45(9):489–504.
  • Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2017;54(10):7736–7745.
  • Fritz NE, Kegelmeyer DA, Kloos AD, et al. Motor performance differentiates individuals with Lewy body dementia, Parkinson’s and Alzheimer’s disease. Gait Posture. 2016;50:1–7.
  • Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS Nano. 2017;11(11):10712–10723.
  • Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–1950.
  • Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–1648.
  • Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.
  • Stevanato L, Thanabalasundaram L, Vysokov N, et al. Investigation of content, stoichiometry and transfer of miRNA from human neural stem cell line derived exosomes. PLoS One. 2016;11(1):e0146353.
  • Li P, Kaslan M, Lee SH, et al. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.
  • Xicoy H, Wieringa B, Martens GJ. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener. 2017;12:10.
  • van der Merwe C, van Dyk HC, Engelbrecht L, et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol. 2017;54(4):2752–2762.
  • Krishna A, Biryukov M, Trefois C, et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genomics. 2014;15:1154.
  • Gong P, Deng F, Zhang W, et al. Tectorigenin attenuates the MPP-induced SH-SY5Y cell damage, indicating a potential beneficial role in Parkinson’s disease by oxidative stress inhibition. Exp Ther Med. 2017;14(5):4431–4437.
  • Lan YL, Zhou JJ, Liu J, et al. Uncaria rhynchophylla Ameliorates Parkinson’s disease by inhibiting HSP90 expression: insights from quantitative proteomics. Cell Physiol Biochem. 2018;47(4):1453–1464.
  • Eum WS, Shin MJ, Lee CH, et al. Neuroprotective effects of Tat-ATOX1 protein against MPP-induced SH-SY5Y cell deaths and in MPTP-induced mouse model of Parkinson’s disease. Biochimie. 2019;156:158–168.
  • Shi M, Liu C, Cook TJ, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128(5):639–650.
  • Török N, Majláth Z, Szalárdy L, et al. Investigational α-synuclein aggregation inhibitors: hope for Parkinson's disease. Expert Opin Investig Drugs. 2016;25(11):1281–1294.
  • Emelyanov A, Kulabukhova D, Garaeva L, et al. SNCA variants and alpha-synuclein level in CD45+ blood cells in Parkinson’s disease. J Neurol Sci. 2018;395:135–140.
  • Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119.
  • Segura-Aguilar J, Paris I, Muñoz P, et al. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem. 2014;129(6):898–915.
  • Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson’s disease. Mov Disord. 2015;30(4):472–483.
  • Szadejko K, Dziewiatowski K, Szabat K, et al. Polyneuropathy in levodopa-treated Parkinson’s patients. J Neurol Sci. 2016;371:36–41.
  • Chen Y, Lian YJ, Ma YQ, et al. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology. 2018;68:212–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.