182
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Co-treatment of AMPA endocytosis inhibitor and GluN2B antagonist facilitate consolidation and retrieval of memory impaired by β amyloid peptide

, &
Pages 714-723 | Received 26 May 2020, Accepted 03 Oct 2020, Published online: 28 Oct 2020

References

  • Guntupalli S, Widagdo J, Anggono V. Amyloid-β-induced dysregulation of AMPA receptor trafficking. Neural Plast. 2016;2016:1–12.
  • Vance E, Gonzalez Murcia JD, Miller JB, et al. Failure to detect synergy between variants in transferrin and hemochromatosis and Alzheimer's disease in large cohort. Neurobiol Aging. 2020;89:142.e9–142.e12.
  • Chu L. Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228–237.
  • McDermott KB, Roediger HL. Memory (encoding, storage, retrieval). General psychology FA2018. Noba Project. OR: Milwaukie; 2018. p. 117–153.
  • Igaz LM, Winograd M, Cammarota M, et al. Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol. 2006;26(4–6):987–1000.
  • Vianna MR, Izquierdo LA, Barros DM, et al. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades . An Acad Bras Cienc. 2000;72(3):353–364.
  • Schafe GE, Nader K, Blair HT, et al. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 2001;24(9):540–546.
  • Sutton MA. Interaction between amount and pattern of training in the induction of intermediate-and long-term memory for sensitization in Aplysia. Learn Memory. 2002;9(1):29–40.
  • Ben-Yakov A, Dudai Y, Mayford MR. Memory retrieval in mice and men. Cold Spring Harbor Perspect Biol. 2015;7(12):a021790.
  • Hong JG, Kim DH, Lee CH, et al. GSK-3β activity in the hippocampus is required for memory retrieval. Neurobiol Learn Mem. 2012;98(2):122–129.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.
  • Chen X, Garelick MG, Wang H, et al. PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci. 2005;8(7):925–931.
  • Ungerer A, Mathis C, Melan C. Are glutamate receptors specifically implicated in some forms of memory processes? Exp Brain Res. 1998;123(1–2):45–51.
  • Swanson GT, Sakai R. Ligands for ionotropic glutamate receptors. Prog Mol Subcell Biol. 2009;46:123–157.
  • Khan MZ. Ionotropic glutamate receptors (iGluRs) of the delta family (GluD1 and GluD2) and synaptogenesis. Alexandria J Med. 2017; 53(3) :201–206.
  • Sachser RM, Haubrich J, Lunardi PS, et al. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology. 2017;112(Pt A):94–103.,
  • Herring BE, Nicoll RA. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol. 2016;78:351–365.
  • Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor Perspect Biol. 2012;4(6):a005710–a005710.
  • Vieira M, Yong XLH, Roche KW, et al. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J Neurochem. 2020;154(2):121–143.,
  • Won S, Roche KW. Regulation of glutamate receptors by striatal‐enriched tyrosine phosphatase 61 (STEP61). Journal of Physiol. 2020. DOI:https://doi.org/10.1113/jp278703
  • Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130163.
  • Alsaad HA, DeKorver NW, Mao Z, et al. In the telencephalon, GluN2C NMDA receptor subunit mRNA is predominately expressed in glial cells and GluN2D mRNA in interneurons. Neurochem Res. 2019;44(1):61–77.
  • Perszyk RE, DiRaddo JO, Strong KL, et al. GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol. 2016;90(6):689–702.
  • Sun Y, Xu Y, Cheng X, et al. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res. 2018;96(8) :1430–1443.
  • Papouin T, Ladépêche L, Ruel J, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–646.
  • Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004;45(5):583–595.
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112.
  • Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory . Nat Med. 2008;14(8):837–842.
  • Dinamarca MC, Ríos JA, Inestrosa NC. Postsynaptic receptors for amyloid-β oligomers as mediators of neuronal damage in Alzheimer’s disease. Front Physio. 2012;3:464.
  • Zhang Y, Li P, Feng J, et al. Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci. 2016;37(7):1039–1047.
  • Shen W-X, Chen J-H, Lu J-H, et al. TGF-β1 protection against Aβ1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci. 2014;15(12):22092–22108.
  • Yu Y, Huang Z, Dai C, et al. Facilitated AMPAR endocytosis causally contributes to the maternal sleep deprivation-induced impairments of synaptic plasticity and cognition in the offspring rats. Neuropharmacology. 2018;133:155–162.
  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Herrero-Labrador R, et al. The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol. 2014;17(12):1943–1955.
  • Rossato JI, Bevilaqua LRM, Myskiw JC, et al. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem. 2007;14(1):36–46.
  • Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. JoVE. 2017;(126):e55718.
  • Ma Y-Y, Guo C-Y, Yu P, et al. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol. 2006; 200(2):343–355.
  • Ge Y, Dong Z, Bagot RC, et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A. 2010;107(38):16697–16702.
  • Narenji SA, Naghdi N, Oryan S, et al. Effect of 3α-anderostanediol and indomethacin on acquisition, consolidation and retrieval stage of spatial memory in adult male rats. Iran Biomed J. 2012;16(3):145.
  • Jalilzad M, Jafari A, Babaei P. Neuregulin1β improves both spatial and associative learning and memory in Alzheimer model of rats possibly through signaling pathways other than Erk1/2. Neuropeptides. 2019;78:101963.
  • Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89(1):121–145.
  • Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294(5544):1030–1038.
  • Porte Y, Trifilieff P, Wolff M, et al. Extinction of spatial memory alters CREB phosphorylation in hippocampal CA1. Hippocampus. 2011;21(11):1169–1179.
  • Middei S, Houeland G, Cavallucci V, et al. CREB is necessary for synaptic maintenance and learning-induced changes of the AMPA receptor GluA1 subunit. Hippocampus. 2013;23(6):488–499.
  • Chater TE, Goda Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci. 2014;8:401.
  • Rao TS, Cler JA, Oei EJ, et al. The polyamines, spermine and spermidine, negatively modulate N-methyl-d-aspartate (NMDA) and quisqualate receptor mediated responses in vivo: Cerebellar cyclic GMP measurements. Neurochem Int. 1990;16(2):199–206.
  • Legendre P, Westbrook GL. Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol Pharmacol. 1991;40(2):289–298.
  • Amico-Ruvio SA, Paganelli MA, Myers JM, et al. Ifenprodil effects on GluN2B-containing glutamate receptors. Mol Pharmacol. 2012;82(6):1074–1081.
  • Singewald N, Schmuckermair C, Whittle N, et al. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther. 2015;149:150–190.
  • Williams K. Extracellular modulation of NMDA receptors. In: Van Dongen AM, editor. Biology of the NMDA receptor. Boca Raton: CRC press/Taylor& Francis; 2009. Chapter 11, p. 235.
  • Li L, Liu X, Qiao C, et al. Ifenprodil attenuates methamphetamine-induced behavioral sensitization and activation of Ras-ERK-ΔFosB pathway in the Caudate Putamen. Neurochem Res. 2016;41(10):2636–2644.
  • Bhatt JM, Prakash A, Suryavanshi PS, et al. Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating. Mol Pharmacol. 2013;83(1):9–21.
  • Hendricson AW, Miao CLA, Lippmann MJ, et al. Ifenprodil and ethanol enhance NMDA receptor-dependent long-term depression. J Pharmacol Exp Ther. 2002;301(3):938–944.
  • Ma Y-Y, Yu P, Guo C-Y, et al. Effects of ifenprodil on morphine-induced conditioned place preference and spatial learning and memory in rats. Neurochem Res. 2011;36(3):383–391.
  • Nader K, Hardt O. A single standard for memory: the case for reconsolidation. Nat Rev Neurosci. 2009;10(3):224–234.
  • Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci. 2013;15(1):11–27.
  • Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus. 2015;25(4):415–431.
  • Deli A, Schipany K, Rosner M, et al. Blocking mTORC1 activity by rapamycin leads to impairment of spatial memory retrieval but not acquisition in C57BL/6J mice. Behav Brain Res. 2012;229(2):320–324.
  • Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol. 2012;22(3):496–508.
  • Coley AA, Gao W-J. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep. 2019;9(1):1–13.
  • Day M, Langston R, Morris RG. Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature. 2003;424(6945):205–209.
  • Izquierdo LA, Barros DM, Ardenghi PG, et al. Different hippocampal molecular requirements for short-and long-term retrieval of one-trial avoidance learning. Behav Brain Res. 2000;111(1–2):93–98.
  • Li Y-Q, Xue Y-X, He Y-Y, et al. Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory. J Neurosci. 2011;31(14):5436–5446.
  • Hackos DH, Hanson JE. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology. 2017;112(Pt A):34–45.
  • Khlestova E, Johnson JW, Krystal JH, et al. The role of GluN2C-containing NMDA receptors in ketamine's psychotogenic action and in Schizophrenia models. J Neurosci. 2016; 36(44):11151–11157.
  • Ogden KK, Khatri A, Traynelis SF, et al. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology. 2014;39(3):625–637.
  • Engelhardt J. v, Bocklisch C, TãNges L, et al. GluN2D-containing NMDA receptors-mediate synaptic currents in hippocampal interneurons and pyramidal cells in juvenile mice. Front Cell Neurosci. 2015;9:95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.