404
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis

, , , , , & ORCID Icon show all
Pages 724-734 | Received 01 Jul 2020, Accepted 12 Sep 2020, Published online: 29 Oct 2020

References

  • Huang WJ, Chen WW, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med. 2017;13(6):3163–3166.
  • Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636.
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–269.
  • Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180–1188.
  • Saposnik G, Sempere AP, Raptis R, et al. Decision making under uncertainty, therapeutic inertia, and physicians' risk preferences in the management of multiple sclerosis (DIScUTIR MS). BMC Neurol. 2016;16:58:
  • McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59(3):369–383.
  • Singh V, Tripathi A, Dutta R. Proteomic Approaches to Decipher Mechanisms Underlying Pathogenesis in Multiple Sclerosis Patients. Proteomics. 2019;19(16):e1800335.
  • Schutzer SE, Liu T, Natelson BH, et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010;5(6):e10980:
  • Wu C, Duan J, Liu T, et al. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1021:57–68.
  • Jankovska E, Svitek M, Holada K, et al. Affinity depletion versus relative protein enrichment: a side-by-side comparison of two major strategies for increasing human cerebrospinal fluid proteome coverage. Clin Proteomics. 2019;16:9.
  • Boschetti E, Righetti PG. The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteomics. 2008;71(3):255–264.
  • Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res. 2017;95(1–2):633–643.
  • Voskuhl RR. The effect of sex on multiple sclerosis risk and disease progression. Mult Scler. 2020;26(5):554–560.
  • Parrado-Fernández C, Blennow K, Hansson M, et al. Evidence for sex difference in the CSF/plasma albumin ratio in ∼20 000 patients and 335 healthy volunteers. J Cell Mol Med. 2018;22(10):5151–5154.
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–1452.
  • Thompson A, Schäfer J, Kuhn K, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–1904. :
  • Wang Y, Yang F, Gritsenko MA, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11(10):2019–2026.
  • Comabella M, Fernández M, Martin R, et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain. 2010;133(Pt 4):1082–1093.
  • Møllgaard M, Degn M, Sellebjerg F, et al. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur J Neurol. 2016;23(5):898–905.
  • Nakashima I, Fujinoki M, Fujihara K, et al. Alteration of cystatin C in the cerebrospinal fluid of multiple sclerosis. Ann Neurol. 2007;62(2):197–200.
  • Presslauer S, Milosavljevic D, Brücke T, et al. Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J Neurol. 2008;255(10):1508–1514.
  • Agah E, Zardoui A, Saghazadeh A, et al. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190252.
  • Bagnato F, Durastanti V, Finamore L, et al. Beta-2microglobulin and neopterin as markers of disease activity in multiple sclerosis. Neurol Sci. 2003;24(0):S301–S4.
  • Ma J, Tanaka KF, Yamada G, et al. Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res. 2007;32(2):311–320.
  • Kroksveen AC, Guldbrandsen A, Vaudel M, et al. In-depth cerebrospinal fluid quantitative proteome and deglycoproteome analysis: presenting a comprehensive picture of pathways and processes affected by multiple sclerosis. J Proteome Res. 2017;16(1):179–194.
  • Häggmark A, Byström S, Ayoglu B, et al. Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics. 2013;13(15):2256–2267.
  • Hansen NE, Karle H, Jensen A, et al. Lysozyme activity in cerebrospinal fluid. Studies in inflammatory and non-inflammatory CNS disorders. Acta Neurol Scand. 1977;55(5):418–424.
  • Singh V, van Pelt ED, Stoop MP, et al. Gray matter-related proteins are associated with childhood-onset multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2(5):e155.
  • Stoevring B, Jaliashvili I, Thougaard AV, et al. Tetranectin in cerebrospinal fluid of patients with multiple sclerosis. Scand J Clin Lab Invest. 2006;66(7):577–583.
  • Valko PO, Roschitzki B, Faigle W, et al. In search of cerebrospinal fluid biomarkers of fatigue in multiple sclerosis: a proteomics study. J Sleep Res. 2019;28(3):e12721.
  • Rosenling T, Stoop MP, Attali A, et al. Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis. J Proteome Res. 2012;11(4):2048–2060.
  • Hällgren R, Terént A, Venge P. Lactoferrin, lysozyme, and beta 2-microglobulin levels in cerebrospinal fluid: differential indices of CNS inflammation. Inflammation. 1982;6(3):291–304.
  • Oberg G, Hällgren R, Venge P. Beta 2-microglobulin, lysozyme and lactoferrin in cerebrospinal fluid in patients with lymphoma or leukaemia: relationship to CNS involvement and the effect of prophylactic intrathecal treatment with methotrexate. Br J Haematol. 1987;66(3):315–322.
  • Terent A, Hällgren R, Venge P, et al. Lactoferrin, lysozyme, and beta 2-microglobulin in cerebrospinal fluid. Elevated levels in patients with acute cerebrovascular lesions as indices of inflammation. Stroke. 1981;12(1):40–46.
  • De Riccardis L, Buccolieri A, Muci M, et al. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1828–1838.
  • Gresle MM, Schulz K, Jonas A, et al. Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution. J Neurosci Res. 2014;92(6):732–742.
  • Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001;11(1):107–116.
  • Venturini G. Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem. 1973;21(5):1147–1151.
  • Maña P, Fordham SA, Staykova MA, et al. Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation. J Neuroimmunol. 2009;210(1–2):13–21.
  • Alimonti A, Ristori G, Giubilei F, et al. Serum chemical elements and oxidative status in Alzheimer's disease, Parkinson disease and multiple sclerosis. Neurotoxicology. 2007;28(3):450–456.
  • Sedighi B, Ebrahimi HA, Haghdoost AA, et al. Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group. Iran J Neurol. 2013;12(4):125–128.
  • Melø TM, Larsen C, White LR, et al. Manganese, copper, and zinc in cerebrospinal fluid from patients with multiple sclerosis. Biol Trace Elem Res. 2003;93(1–3):1–8.
  • Ghazavi A, Kianbakht S, Ghasami K, et al. High copper and low zinc serum levels in Iranian patients with multiple sclerosis: a case control study. Clin Lab. 2012;58:161–164.
  • Harris ZL, Durley AP, Man TK, et al. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA. 1999;96(19):10812–10817.
  • Neema M, Stankiewicz J, Arora A, et al. T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging. 2001;17(Suppl 1):16S–21S.
  • Ge Y, Jensen JH, Lu H, et al. Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging. Am J Neuroradiol. 2007;28(9):1639–1644.
  • Zivadinov R, Heininen-Brown M, Schirda CV, et al. Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case–control study. Neuroimage. 2012;59(1):331–339.
  • Craelius W, Migdal MW, Luessenhop CP, et al. Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med. 1982;106(8):397–399.
  • Hametner S, Wimmer I, Haider L, et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74(6):848–861.
  • Dunham J, Bauer J, Campbell GR, et al. Oxidative injury and iron redistribution are pathological hallmarks of marmoset experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol. 2017;76(6):467–478.
  • Rosa L, Cutone A, Lepanto MS, et al. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. IJMS. 2017;18(9):1985.
  • Sokolov AV, Zakharova ET, Kostevich VA, et al. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Biometals. 2014;27(5):815–828.
  • Rosenberg HF. Eosinophil-derived neurotoxin/RNase 2: connecting the past, the present and the future. Curr Pharm Biotechnol. 2008;9(3):135–140.
  • Yang D, Chen Q, Rosenberg HF, et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol. 2004;173(10):6134–6142.
  • Yang D, Chen Q, Su SB, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205(1):79–90.
  • Jafarzadeh A, Nemati M, Khorramdelazad H, et al. The toll-like receptor 2 (TLR2)-related immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran J Allergy Asthma Immunol. 2019;18(3):230–250.
  • Fujiwara M, Anstadt EJ, Flynn B, et al. Enhanced TLR2 responses in multiple sclerosis. Clin Exp Immunol. 2018;193(3):313–326.
  • Wasko NJ, Nichols F, Clark RB. Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. Autoimmun Rev. 2020;19(1):102430.
  • Sloane JA, Batt C, Ma Y, et al. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A. 2010;107(25):11555–11560.
  • Esser S, Girish L, Bigler K, et al. Toll-like receptor 2-mediated glial cell activation in a mouse model of cuprizone-induced demyelination. Mol Neurobiol. 2018;55(8):6237–6249.
  • Anstadt EJ, Fujiwara M, Wasko N, et al. TLR tolerance as a treatment for central nervous system autoimmunity. J Immunol. 2016;197(6):2110–2118.
  • Wasko NJ, Kulak MH, Paul D, et al. Systemic TLR2 tolerance enhances central nervous system remyelination. J Neuroinflammation. 2019;16(1):158.
  • Chatzileontiadou DS, Parmenopoulou V, Manta S, et al. Triazole double-headed ribonucleosides as inhibitors of eosinophil derived neurotoxin. Bioorg Chem. 2015;63:152–165.
  • Satoh J, Onoue H, Arima K, et al. Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol. 2005;64(2):129–138.
  • Lee JY, Kim MJ, Thomas S, et al. Limiting neuronal Nogo receptor 1 signaling during experimental autoimmune encephalomyelitis preserves axonal transport and abrogates inflammatory demyelination. J Neurosci. 2019;39(28):5562–5580.
  • Ferraro GB, Morrison CJ, Overall CM, et al. Membrane-type matrix metalloproteinase-3 regulates neuronal responsiveness to myelin through Nogo-66 receptor 1 cleavage. J Biol Chem. 2011;286(36):31418–31424.
  • Sanz RL, Ferraro GB, Kacervosky J, et al. MT3-MMP promotes excitatory synapse formation by promoting Nogo-66 receptor ectodomain shedding. J Neurosci. 2018;38(3):518–529.
  • Li S, Liu BP, Budel S, et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci. 2004;24(46):10511–10520.
  • Harvey PA, Lee DH, Qian F, et al. Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush. J Neurosci. 2009;29(19):6285–6295.
  • Petratos S, Ozturk E, Azari MF, et al. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain. 2012;135(Pt 6):1794–1818.
  • Kim MJ, Kang JH, Theotokis P, et al. Can we design a Nogo receptor-dependent cellular therapy to target MS? Cells. 2018;8(1):1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.