479
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis

ORCID Icon
Pages 1165-1177 | Received 25 Jun 2020, Accepted 11 Dec 2020, Published online: 07 Jan 2021

References

  • Hosseini-Alghaderi S, Baron M. Notch3 in Development. Health and Disease. Biomolecules. 2020;10(3):485.
  • Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol. 2016;17(11):722–735.
  • Khosla R, Vyas AK, Trehanpati N. Dichotomy of Notch signalling in regulating tumour immune surveillance. Scand J Immunol. 2019;89(3):e12744
  • Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta. 2013;1830(2):2435–2448.
  • Kieroń M, Żekanowski C, Falk A, et al. Oxidative DNA Damage Signalling in Neural Stem Cells in Alzheimer’s Disease. Oxid Med Cell Longev. 2019;2019:2149812.
  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–335.
  • Hollands C, Bartolotti N, Lazarov O. Alzheimer's disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front Neurosci. 2016;10:178
  • Ables JL, DeCarolis NA, Johnson MA, et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci. 2010;30(31):10484–11092.
  • Lugert S, Basak O, Knuckles P, et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell . 2010;6(5):445–456.
  • Dhaliwal J, Kannangara TS, Vaculik M, et al. Adult hippocampal neurogenesis occurs in the absence of Presenilin 1 and Presenilin 2. Sci. Rep. 2018;8:1–3.
  • Muracciole X, El-Amine W, Tabouret E, et al. Negative Survival Impact of High Radiation Doses to Neural Stem Cells Niches in an IDH-Wild-Type Glioblastoma Population. Front. Oncol. 2018;8:426.
  • Bagheri‐Mohammadi S, Karimian M, Alani B, et al. Stem cell-based therapy for Parkinson's disease with a focus on human endometrium-derived mesenchymal stem cells . J Cell Physiol. 2019;234(2):1326–1335.
  • Yan BC, Kim IH, Park JH, et al. Systemic administration of low dosage of tetanus toxin decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus. Lab Anim Res. 2013;29(3):148–155.
  • Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914.
  • Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications. Front Oncol. 2019;9:779
  • Feliciano DM, Bordey A, Bonfanti L. Noncanonical sites of adult neurogenesis in the mammalian brain. Cold Spring Harb Perspect Biol. 2015;7(10):a018846
  • Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell . 2015;17(4):385–395.
  • Zywitza V, Misios A, Bunatyan L, et al. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 2018;25(9):2457–2469.
  • Cutler RR, Kokovay E. Rejuvenating subventricular zone neurogenesis in the aging brain. Curr Opin Pharmacol. 2020;50:1–8.
  • Schwarz TJ, Ebert B, Lie DC. Stem cell maintenance in the adult mammalian hippocampus: a matter of signal integration? Dev Neurobiol. 2012;72(7):1006–1015.
  • Breunig JJ, Silbereis J, Vaccarino FM, et al. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A. 2007;104(51):20558–20563.
  • George S, Hamblin MR, Abrahamse H. Differentiation of Mesenchymal Stem Cells to Neuroglia: in the Context of Cell Signalling. Stem Cell Rev Rep. 2019;15(6):814–826.
  • Borggrefe T, Liefke R. Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle. 2012;11(2):264–276.
  • Rodrigues C, Joy LR, Sachithanandan SP, et al. Notch signalling in cervical cancer. Exp Cell Res. 2019;385(2):111682.
  • Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565–597.
  • Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194(3):237–255.
  • Arias AM, Zecchini V, Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev. 2002;12(5):524–533.
  • Corbin JG, Gaiano N, Juliano SL, et al. Regulation of neural progenitor cell development in the nervous system. J Neurochem. 2008;106(6):2272–2287.
  • Kageyama R, Ohtsuka T, Shimojo H, et al. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci. 2008;11(11):1247–1251.
  • Ehm O, Göritz C, Covic M, et al. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus . J Neurosci. 2010;30(41):13794–13807.
  • Ekdahl CT, Claasen JH, Bonde S, et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632–13637.
  • Dahlhaus M, Hermans JM, Van Woerden LH, et al. Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex. J Neurosci. 2008;28(43):10794–10802.,
  • Imayoshi I, Kageyama R. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron. 2014;82(1):9–23.
  • Sueda R, Kageyama R. Regulation of active and quiescent somatic stem cells by Notch signaling. Dev Growth Differ. 2020;62(1):59–66.
  • Sueda R, Imayoshi I, Harima Y, et al. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 2019;33(9-10):511–523.
  • Imayoshi I, Sakamoto M, Yamaguchi M, et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci. 2010;30(9):3489–3498.
  • Favaro R, Valotta M, Ferri AL, et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci. 2009;12(10):1248–1256.
  • Steiner B, Klempin F, Wang L, et al. Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia. 2006;54(8):805–814.
  • Gao Y, Zhang R, Wei G, et al. Long non-coding RNA maternally expressed 3 increases the expression of neuron-specific genes by targeting miR-128-3p in all-trans retinoic acid-induced neurogenic differentiation from amniotic epithelial cells. Front. Cell Dev. Biol. 2019;7:342.
  • Hara T, Maejima I, Akuzawa T, et al. Rer1-mediated quality control system is required for neural stem cell maintenance during cerebral cortex development. PLoS Genet. 2018;14(9):e1007647.
  • Handler M, Yang X, Shen J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development. 2000;127(12):2593–2606.
  • Lütolf S, Radtke F, Aguet M, et al. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development. 2002;129(2):373–385.
  • Valkova C, Liebmann L, Krämer A, et al. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci. Rep. 2017;7:1–2.
  • Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. Neurogenesis (Austin)). 2017;4(1):e1313647
  • Bagheri-Mohammadi S. 2020. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank.
  • Vickers NJ. Animal Communication: When I'm Calling You, Will You Answer Too? Curr Biol. 2017;27(14):R713–725.
  • Malzkorn B, Wolter M, Liesenberg F, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010;20(3):539–350.
  • Bekri A, Liao M, Drapeau P. Glycine regulates neural stem cell proliferation during development via Lnx1-dependent Notch signaling. Front Mol Neurosci. 2019;12:44
  • Kim JW, Han KR, Kim W, et al. Adult hippocampal neurogenesis can be enhanced by cold challenge independently from beigeing effects. Front Neurosci. 2019;13:92
  • Laing BT, Do K, Matsubara T, et al. Voluntary exercise improves hypothalamic and metabolic function in obese mice. J Endocrinol. 2016;229(2):109–122.
  • Gould E, Tanapat P, Rydel T, et al. Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry. 2000;48(8):715–720.
  • Oh SH, Kim HN, Park HJ, et al. Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer's disease model. Cell Transplant. 2015;24(6):1097–1109.
  • Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812
  • Aimone JB, Li Y, Lee SW, et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026.
  • Rusznák Z, Henskens W, Schofield E, et al. Adult neurogenesis and gliogenesis: possible mechanisms for neurorestoration. Exp Neurobiol. 2016;25(3):103–112.
  • Liu H, Song N. Molecular mechanism of adult neurogenesis and its association with human brain diseases. J. Cent. Nerv. Syst. Dis. 2016;8:JCNSD–S32204.
  • Yu Z, Lin D, Zhong Y, et al. Transmembrane protein 108 involves in adult neurogenesis in the hippocampal dentate gyrus. Cell Biosci. 2019;9:9–9.
  • Agarwal S, Tiwari SK, Seth B, et al. Activation of autophagic flux against xenoestrogen bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways. J Biol Chem. 2015;290(34):21163–21184.
  • Dickins EM, Salinas PC. Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci. 2013;7:162
  • Marzo A, Galli S, Lopes D, et al. Reversal of synapse degeneration by restoring Wnt signaling in the adult hippocampus. Curr Biol. 2016;26(19):2551–2561.,
  • Ciani L, Boyle KA, Dickins E, et al. Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca2+/Calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 2011;108(26):10732–10747.
  • Sahores M, Gibb A, Salinas PC. Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development. 2010;137(13):2215–2225.
  • Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn. 2016;245(5):569–579.
  • Lee SH, Shin SM, Zhong P, et al. Reciprocal control of excitatory synapse numbers by Wnt and Wnt inhibitor PRR7 secreted on exosomes. Nat. Commun. 2018;9:1–5.
  • Seib DR, Corsini NS, Ellwanger K, et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell . 2013;12(2):204–214.
  • Jang MH, Bonaguidi MA, Kitabatake Y, et al. Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell. 2013;12(2):215–223.
  • Schafer ST, Han J, Pena M, et al. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J Neurosci. 2015;35(12):4983–4998.
  • Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11(2):77–86.
  • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–477.
  • Wexler EM, Paucer A, Kornblum HI, et al. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells. 2009;27(5):1130–1141.
  • Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–1385.
  • Armenteros T, Andreu Z, Hortigüela R, et al. BMP and WNT signalling cooperate through LEF1 in the neuronal specification of adult hippocampal neural stem and progenitor cells. Sci. Rep. 2018;8:1–4.
  • Ahmad SAI, Anam MB, Istiaq A, et al. Tsukushi is essential for proper maintenance and terminal differentiation of mouse hippocampal neural stem cells. Dev Growth Differ. 2020;62(2):108–117.,
  • Mostafa S, Pakvasa M, Coalson E, et al. The wonders of BMP9: from mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis. 2019;6(3):201–223.
  • Luo J, Sun MH, Kang Q, et al. Gene therapy for bone regeneration. Curr Gene Ther. 2005;5(2):167–179.
  • Bagheri-Mohammadi S, Alani B, Karimian M, et al. Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson's disease therapy. Mol Biol Rep. 2019;46(4):4293–4302.
  • Bagheri-Mohammadi S. Microglia in Alzheimer's Disease: The Role of Stem Cell-Microglia Interaction in Brain Homeostasis. Neurochem Res. 2020;10:1–8.
  • Bonaguidi MA, Peng CY, McGuire T, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci. 2008;28(37):9194–9204.
  • Bond AM, Peng CY, Meyers EA, et al. BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage. Stem Cells. 2014;32(8):2201–2214.
  • Mehler MF, Mabie PC, Zhu G, et al. Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci. 2000;22(1-2):74–85.
  • Sasaki K, Davies J, Doldán NG, et al. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice . Aging (Albany NY)). 2019;11(2):401–422.
  • Pous L, Deshpande SS, Nath S, et al. Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat Commun. 2020;11(1):13.
  • Wang Z, Oron E, Nelson B, et al. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell. 2012;10(4):440–454.
  • Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–1083.
  • Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. 2014;8:396
  • Mikawa S, Wang C, Sato K. Bone morphogenetic protein-4 expression in the adult rat brain. J Comp Neurol. 2006;499(4):613–625.
  • Meyers EA, Gobeske KT, Bond AM, et al. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition. Neurobiol Aging. 2016;38:164–175.
  • Fares J, Bou Diab Z, Nabha S, et al. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci. 2019;129(6):598–611.
  • Tosun M, Semerci F, Maletic-Savatic M. Heterogeneity of Stem Cells in the Hippocampus.Adv Exp Med Biol. 2019;1169:31–53.
  • Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci. 2008;363(1489):123–137.
  • Lai K, Kaspar BK, Gage FH, et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci. 2003;6(1):21–37.
  • Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132(2):335–344.
  • Li G, Fang L, Fernández G, et al. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron. 2013;78(4):658–672.
  • Petralia RS, Wang YX, Mattson MP, et al. Sonic hedgehog distribution within mature hippocampal neurons. Commun Integr Biol. 2011;4(6):775–787.
  • Gonzalez-Reyes LE, Chiang CC, Zhang M, et al. Sonic Hedgehog is expressed by hilar mossy cells and regulates cellular survival and neurogenesis in the adult hippocampus. Sci. Rep. 2019;9:1–20.
  • Han YG, Spassky N, Romaguera-Ros M, et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 2008;11(3):277–284.
  • Whitfield JF, Chakravarthy BR. The neuronal primary cilium: driver of neurogenesis and memory formation in the hippocampal dentate gyrus? Cell Signal. 2009;21(9):1351–1365.
  • Pang ZP, Yang N, Vierbuchen T, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220–233.
  • Wapinski OL, Vierbuchen T, Qu K, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell. 2013;155(3):621–635.
  • Roybon L, Mastracci TL, Ribeiro D, et al. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. Cereb Cortex. 2010;20(5):1234–1244.
  • Wang LH, Baker NE. E proteins and ID proteins: helix-loop-helix partners in development and disease. Dev Cell. 2015;35(3):269–280.
  • Quezada-Ramírez MA, Castañeda-Arellano R, Pérez-Sánchez G, et al. The Growth arrest specific 1 (Gas1) gene is transcriptionally regulated by NeuroD1 via two distal E-boxes. Exp Cell Res. 2018;363(2):332–341.
  • Yabut OR, Pleasure SJ. Sonic hedgehog signaling rises to the surface: emerging roles in neocortical development. Brain Plast. 2018;3(2):119–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.