435
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Neurocognitive impairment and social cognition in multiple sclerosis

, , , , , , , , , & show all
Pages 1229-1244 | Received 02 Sep 2020, Accepted 11 Jan 2021, Published online: 25 Feb 2021

References

  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015; 15(9):545–558.
  • Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol. 2009; 65(3):239–248.
  • Disanto G, Berlanga AJ, Handel AE, et al. Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis. 2010;2011:932351.
  • Ramagopalan SV, Dobson R, Meier UC, et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010; 9(7):727–739.
  • Kalb R, Beier M, Benedict RH, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler. 2018; 24(13):1665–1680.
  • Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008; 7(12):1139–1151.
  • Ziemssen T, Akgun K, Bruck W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019; 16(1):272
  • Briggs FBS, Yu JC, Davis MF, et al. Multiple sclerosis risk factors contribute to onset heterogeneity. Mult Scler Relat Disord. 2019; 28:11–16.
  • Amato MP, Portaccio E. Truly benign multiple sclerosis is rare: let's stop fooling ourselves-yes. Mult Scler. 2012; 18(1):13–14.
  • Correale J, Ysrraelit MC, Fiol MP. Benign multiple sclerosis: does it exist? Curr Neurol Neurosci Rep. 2012; 12(5):601–609.
  • Reynders T, D'haeseleer M, De Keyser J, et al. Definition, prevalence and predictive factors of benign multiple sclerosis. eNeurologicalSci. 2017; 7:37–43.
  • Alroughani R, Boyko A. Pediatric multiple sclerosis: a review. BMC Neurol. 2018; 18(1):27
  • Boiko A, Vorobeychik G, Paty D, et al. Early onset multiple sclerosis: a longitudinal study. Neurology. 2002;59(7):1006–1010.,
  • Otallah S, Banwell B. Pediatric Multiple Sclerosis: an Update. Curr Neurol Neurosci Rep. 2018; 18(11):76
  • Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018; 4(1):43.
  • Lynch SG, Parmenter BA, Denney DR. The association between cognitive impairment and physical disability in multiple sclerosis. Mult Scler. 2005; 11(4):469–476.
  • Valentina IG, Jivko SK, Tsvetanka SG, et al. Social Cognition Impairments in Patients with Multiple Sclerosis: Comparison with Grade of Disability. Neurol India. 2020; 68(1):94–98.
  • Piras MR, Magnano I, Canu EDG, et al. Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry. 2003; 74(7):878–885.
  • Carotenuto A, Moccia M, Costabile T, et al. Associations between cognitive impairment at onset and disability accrual in young people with multiple sclerosis. Sci Rep. 2019;9(1):18074.,
  • Bergendal G, Fredrikson S, Almkvist O. Selective decline in information processing in subgroups of multiple sclerosis: an 8-year longitudinal study. Eur Neurol. 2007; 57(4):193–202.
  • Beatty WW, Goodkin DE, Hertsgaard D, et al. Clinical and demographic predictors of cognitive performance in multiple sclerosis. Do diagnostic type, disease duration, and disability matter? Arch Neurol. 1990; 47(3):305–308.
  • Rao SM, Leo GJ, Bernardin L, et al. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991; 41(5):685–691.
  • Rahn K, Slusher B, Kaplin A. Cognitive impairment in multiple sclerosis: a forgotten disability remembered. Cerebrum. 2012. 2012; 2012:14–14.
  • Rocca MA, Amato MP, De Stefano N, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14(3):302–317.,
  • Macías Islas MÁ, Ciampi E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines. 2019; 7(1):22.
  • Oreja-Guevara C, Ayuso Blanco T, Brieva Ruiz L, et al. Cognitive Dysfunctions and Assessments in Multiple Sclerosis. Front Neurol. 2019; 10:581
  • Poletti M, Enrici I, Adenzato M. Cognitive and affective Theory of Mind in neurodegenerative diseases: neuropsychological, neuroanatomical and neurochemical levels. Neurosci Biobehav Rev. 2012; 36(9):2147–2164.
  • Cotter J, Firth J, Enzinger C, et al. Social cognition in multiple sclerosis: A systematic review and meta-analysis. Neurology. 2016; 87(16):1727–1736.
  • Isernia S, Baglio F, d'Arma A, et al. Social Mind and Long-Lasting Disease: Focus on Affective and Cognitive Theory of Mind in Multiple Sclerosis. Front Psychol. 2019; 10:218
  • Raimo S, Trojano L, Pappacena S, et al. Neuropsychological correlates of theory of mind deficits in patients with multiple sclerosis. Neuropsychology. 2017; 31(7):811–821.
  • Prochnow D, Donell J, Schäfer R, et al. Alexithymia and impaired facial affect recognition in multiple sclerosis. J Neurol. 2011; 258(9):1683–1688.
  • Chalah MA, Ayache SS. Alexithymia in multiple sclerosis: A systematic review of literature. Neuropsychologia. 2017; 104:31–47.
  • Gleichgerrcht E, Tomashitis B, Sinay V. The relationship between alexithymia, empathy and moral judgment in patients with multiple sclerosis. Eur J Neurol. 2015; 22(9):1295–1303.
  • Chalah MA, Kauv P, Palm U, et al. Deciphering the neural underpinnings of alexithymia in multiple sclerosis. Neurosci Lett. 2020; 725:134894.
  • Dulau C, Deloire M, Diaz H, et al. Social cognition according to cognitive impairment in different clinical phenotypes of multiple sclerosis. J Neurol. 2017; 264(4):740–748.
  • Ayache SS, Chalah MA, Kuempfel T, et al. [Facial emotion recognition, theory of mind and empathy in multiple sclerosis]. Fortschr Neurol Psychiatr. 2017; 85(11):663–674.
  • Cecchetto C, Aiello M, D'Amico D, et al. Facial and bodily emotion recognition in multiple sclerosis: the role of alexithymia and other characteristics of the disease. J Int Neuropsychol Soc. 2014; 20(10):1004–1014.
  • Goerlich-Dobre KS, Lamm C, Pripfl J, et al. The left amygdala: A shared substrate of alexithymia and empathy. Neuroimage. 2015; 122:20–32.
  • Goerlich-Dobre KS, Votinov M, Habel U, et al. Neuroanatomical profiles of alexithymia dimensions and subtypes. Hum Brain Mapp. 2015; 36(10):3805–3818.
  • Correro Ii AN, Paitel ER, Byers SJ, et al. The role of alexithymia in memory and executive functioning across the lifespan. Cogn Emot. 2019:1–16. DOI:10.1080/02699931.2019.1659232
  • Onor M, Trevisiol M, Spano M, et al. Alexithymia and aging: a neuropsychological perspective. J Nerv Ment Dis. 2010; 198(12):891–895.
  • Santorelli GD, Ready RE. Alexithymia and executive function in younger and older adults. Clin Neuropsychol. 2015; 29(7):938–955.
  • Brochet B, Ruet A. Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes. Front Neurol. 2019; 10:261–261.
  • Amato MP, Krupp LB, Charvet LE, et al. Pediatric multiple sclerosis: Cognition and mood. Neurology. 2016; 87(9 Suppl 2):S82–S87.
  • Ekmekci O. Pediatric multiple sclerosis and cognition: a review of clinical, neuropsychologic, and neuroradiologic features. Behav Neurol. 2017. 2017; 2017:1463570–1463570.
  • Ghezzi A, Goretti B, Portaccio E, et al. Cognitive impairment in pediatric multiple sclerosis. Neurol Sci. 2010; 31(S2):215–218.
  • Parrish JB, Fields E. Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. Children (Basel, Switzerland). 2019; 6(2):21.
  • Potagas C, Giogkaraki E, Koutsis G, et al. Cognitive impairment in different MS subtypes and clinically isolated syndromes. J Neurol Sci. 2008; 267(1-2):100–106.
  • Hoffmann S, Tittgemeyer M, von Cramon DY. Cognitive impairment in multiple sclerosis. Curr Opin Neurol. 2007; 20(3):275–280.
  • Amato MP, Razzolini L, Goretti B, et al. Cognitive reserve and cortical atrophy in multiple sclerosis. Neurology. 2013; 80(19):1728–1733.
  • Katsari M, Kasselimis DS, Giogkaraki E, et al. A longitudinal study of cognitive function in multiple sclerosis: is decline inevitable? J Neurol. 2020; 267(5):1464–1475.
  • Bora E, Özakbaş S, Velakoulis D, et al. Social Cognition in Multiple Sclerosis: a Meta-Analysis. Neuropsychol Rev. 2016; 26(2):160–172.
  • Johnen A, et al. Distinct cognitive impairments in different disease courses of multiple sclerosis—A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017; 83:568–578.
  • Chalah MA, Ayache SS. Deficits in social cognition: an unveiled signature of multiple sclerosis. J Int Neuropsychol Soc. 2017; 23(3):266–286.
  • Charvet LE, Cleary RE, Vazquez K, US Network for Pediatric MS, et al. Social cognition in pediatric-onset multiple sclerosis (MS). Mult Scler. 2014;20(11):1478–1484.,
  • Gaudino EA, Chiaravalloti ND, DeLuca J, et al. A comparison of memory performance in relapsing-remitting, primary progressive and secondary progressive, multiple sclerosis. Neuropsychiatry Neuropsychol Behav Neurol. 2001; 14(1):32–44.
  • Kraus JA, Schütze C, Brokate B, et al. Discriminant analysis of the cognitive performance profile of MS patients differentiates their clinical course. J Neurol. 2005; 252(7):808–813.
  • Planche V, Gibelin M, Cregut D, et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur J Neurol. 2016; 23(2):282–289.
  • Ruet A, Deloire M, Charré-Morin J, et al. Cognitive impairment differs between primary progressive and relapsing-remitting MS. Neurology. 2013; 80(16):1501–1508.
  • Di Filippo M, Portaccio E, Mancini A, et al. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat Rev Neurosci. 2018; 19(10):599–609.
  • Di Filippo M, Sarchielli P, Picconi B, et al. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci. 2008; 29(8):402–412.
  • Dineen RA, Vilisaar J, Hlinka J, et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain. 2009; 132(1):239–249.
  • Eftekhari E, Hojjat S-P, Vitorino R, et al. Normal appearing white matter permeability: a marker of inflammation and information processing speed deficit among relapsing remitting multiple sclerosis patients. Neuroradiology. 2017; 59(8):771–780.
  • Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Neuroimage. 2019; 190:32–45.
  • Manca R, Sharrack B, Paling D, et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci. 2018; 388:115–127.
  • Meijer KA, Steenwijk MD, Douw L, et al. Long-range connections are more severely damaged and relevant for cognition in multiple sclerosis. Brain: a Journal of Neurology. 2020; 143(1):150–160.
  • Messina S, Patti F. Gray matters in multiple sclerosis: cognitive impairment and structural MRI. Mult Scler Int. 2014;2014:609694
  • Matsushita F, Kida H, Tabei K-I, et al. Clinical significance of cortical lesions in patients with multiple sclerosis: A neuropsychological and neuroimaging study. Brain Behav. 2018; 8(3):e00934
  • Mesaros S, Rocca MA, Kacar K, et al. Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology. 2012; 78(13):969–975.
  • Achiron A, Chapman J, Magalashvili D, et al. Modeling of cognitive impairment by disease duration in multiple sclerosis: a cross-sectional study. PLoS One. 2013; 8(8):e71058
  • Amato MP, Ponziani G, Siracusa G, et al. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol. 2001; 58(10):1602–1606.
  • Glanz BI, Holland CM, Gauthier SA, et al. Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler. 2007; 13(8):1004–1010.
  • Assouad R, Louapre C, Tourbah A, et al. Clinical and MRI characterization of MS patients with a pure and severe cognitive onset. Clin Neurol Neurosurg. 2014; 126:55–63.
  • Benedict RHB, Holtzer R, Motl RW, et al. Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J Int Neuropsychol Soc. 2011; 17(4):643–653.
  • Moccia M, Lanzillo R, Palladino R, et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult Scler. 2016; 22(5):659–667.
  • Pitteri M, Romualdi C, Magliozzi R, et al. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Mult Scler. 2017; 23(6):848–854.
  • Zipoli V, Goretti B, Hakiki B, et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler. 2010; 16(1):62–67.
  • MacAllister WS, Belman AL, Milazzo M, et al. Cognitive functioning in children and adolescents with multiple sclerosis. Neurology. 2005; 64(8):1422–1425.
  • Carotenuto A, Costabile T, Moccia M, et al. Olfactory function and cognition in relapsing-remitting and secondary-progressive multiple sclerosis . Mult Scler Relat Disord. 2019; 27:1–6.
  • Berneiser J, Wendt J, Grothe M, et al. Impaired recognition of emotional facial expressions in patients with multiple sclerosis. Mult Scler Relat Disord. 2014; 3(4):482–488.
  • Beatty WW, Goodkin DE, Weir WS, et al. Affective judgments by patients with Parkinson’s disease or chronic progressive multiple sclerosis. Bull Psychon Soc. 1989; 27(4):361–364.
  • Beatty WW, Orbelo DM, Sorocco KH, et al. Comprehension of affective prosody in multiple sclerosis. Mult Scler. 2003; 9(2):148–153.
  • Henry A, Tourbah A, Chaunu M-P, et al. Social cognition impairments in relapsing-remitting multiple sclerosis. J Int Neuropsychol Soc. 2011; 17(6):1122–1131.
  • Jehna M, Langkammer C, Wallner-Blazek M, et al. Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging Behav. 2011; 5(4):241–251.
  • Costa SL, Genova HM, DeLuca J, et al. Information processing speed in multiple sclerosis: Past, present, and future. Mult Scler. 2017; 23(6):772–789.
  • Comi G, Filippi M, Martinelli V, et al. Brain MRI correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci. 1995; 132(2):222–227.
  • Heaton RK, Nelson LM, Thompson DS, et al. Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. J Consult Clin Psychol. 1985; 53(1):103–110.
  • Amato MP, Portaccio E, Goretti B, et al. Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Mult Scler. 2010;16(12):1474–1482.
  • Heled E, Aloni R, Achiron A. Cognitive functions and disability progression in relapsing-remitting multiple sclerosis: A longitudinal study. Appl Neuropsychol Adult. 2019;28(2):210–219.
  • Smestad C, Sandvik L, Landrø NI, et al. Cognitive impairment after three decades of multiple sclerosis. Eur J Neurol. 2010; 17(3):499–505.
  • Ruano L, Branco M, Portaccio E, et al. Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: An Italian collaborative study. Mult Scler. 2018; 24(9):1234–1242.
  • Johnen A, Bürkner P-C, Landmeyer NC, German Competence Network Multiple Sclerosis (KKNMS), et al. Can we predict cognitive decline after initial diagnosis of multiple sclerosis? Results from the German National early MS cohort (KKNMS). J Neurol. 2019;266(2):386–397.,
  • Huijbregts SCJ, Kalkers NF, de Sonneville LMJ, et al. Cognitive impairment and decline in different MS subtypes. J Neurol Sci. 2006; 245(1-2):187–194.
  • Carotenuto A, Arcara G, Orefice G, et al. Communication in Multiple Sclerosis: Pragmatic Deficit and its Relation with Cognition and Social Cognition. Arch Clin Neuropsychol. 2018; 33(2):194–205.
  • Henry A, Tourbah A, Chaunu M-P, et al. Social Cognition Abilities in Patients With Different Multiple Sclerosis Subtypes. J Int Neuropsychol Soc. 2017; 23(8):653–664.
  • Raimo S, Trojano L, Spitaleri D, et al. The Relationships Between Apathy and Executive Dysfunction in Multiple Sclerosis. Neuropsychology. 2016;30(6):767–774.,
  • Golde S, Heine J, Pöttgen J, et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Front Neurol. 2020; 11(507):507
  • Strober L, Englert J, Munschauer F, et al. Sensitivity of conventional memory tests in multiple sclerosis: comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult Scler. 2009; 15(9):1077–1084.
  • Nunnari D, De Cola MC, D'Aleo G, et al. Impact of depression, fatigue, and global measure of cortical volume on cognitive impairment in multiple sclerosis. Biomed Res Int. 2015; 2015:519785
  • Dattola V, Logiudice AL, Bonanno L, et al. Does the radiologically isolated syndrome exist? A dual-task cost pilot study. Neurol Sci. 2017; 38(11):2007–2013.
  • Kalron A, Dvir Z, Achiron A. Effect of a cognitive task on postural control in patients with a clinically isolated syndrome suggestive of multiple sclerosis. Eur J Phys Rehabil Med. 2011; 47(4):579–586.
  • Chamard Witkowski L, Mallet M, Bélanger M, et al. Cognitive-Postural Interference in Multiple Sclerosis. Front Neurol. 2019; 10:913.
  • Prosperini L, Castelli L, Sellitto G, et al. Investigating the phenomenon of "cognitive-motor interference" in multiple sclerosis by means of dual-task posturography. Gait Posture. 2015; 41(3):780–785.
  • Campbell J, Rashid W, Cercignani M, et al. Cognitive impairment among patients with multiple sclerosis: associations with employment and quality of life. Postgrad Med J. 2017; 93(1097):143–147.
  • Montel S, Bungener C. Les troubles de l’humeur et des émotions dans la sclérose en plaques: une revue de la littérature. Revue Neurologique. 2007; 163(1):27–37.
  • Ton AMM, Vasconcelos CCF, Alvarenga RMP. Benign multiple sclerosis: aspects of cognition and neuroimaging. Arq Neuropsiquiatr. 2017; 75(6):394–401.
  • Schaefer LM, Poettgen J, Fischer A, et al. Impairment and restrictions in possibly benign multiple sclerosis. Brain Behav. 2019; 9(4):e01259
  • Sayao A-L, Bueno A-M, Devonshire V, et al. The psychosocial and cognitive impact of longstanding 'benign' multiple sclerosis. Mult Scler. 2011;17(11):1375–1383.,
  • Amato MP, Zipoli V, Goretti B, et al. Benign multiple sclerosis: cognitive, psychological and social aspects in a clinical cohort. J Neurol. 2006; 253(8):1054–1059.
  • Amato MP, Portaccio E, Stromillo ML, et al. Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology. 2008; 71(9):632–638.
  • Bester M, Lazar M, Petracca M, et al. Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. J Neurol Sci. 2013; 330(1-2):61–66.
  • Correale J, Peirano I, Romano L. Benign multiple sclerosis: a new definition of this entity is needed. Mult Scler. 2012; 18(2):210–218.
  • Mesaros S, Rocca MA, Riccitelli G, et al. Corpus callosum damage and cognitive dysfunction in benign MS. Hum Brain Mapp. 2009; 30(8):2656–2666.
  • Rovaris M, Riccitelli G, Judica E, et al. Cognitive impairment and structural brain damage in benign multiple sclerosis. Neurology. 2008; 71(19):1521–1526.
  • Portaccio E, Stromillo ML, Goretti B, et al. Neuropsychological and MRI measures predict short-term evolution in benign multiple sclerosis. Neurology. 2009; 73(7):498–503.
  • Crielaard L, Kavaliunas A, Ramanujam R, et al. Factors associated with and long-term outcome of benign multiple sclerosis: a nationwide cohort study. J Neurol Neurosurg Psychiatry. 2019; 90(7):761–767.
  • Gajofatto A, Turatti M, Bianchi MR, et al. Benign multiple sclerosis: physical and cognitive impairment follow distinct evolutions. Acta Neurol Scand. 2016; 133(3):183–191.
  • Hegedüs K, Kárpáti J, Iljicsov A, et al. Neuropsychological characteristics of benign multiple sclerosis patients: A two-year matched cohort study. Mult Scler Relat Disord. 2019; 35:150–155.
  • Sayao A-L, Devonshire V, Tremlett H. Longitudinal follow-up of “benign” multiple sclerosis at 20 years. Neurology. 2007; 68(7):496–500.
  • Hviid LE, Healy BC, Rintell DJ, et al. Patient reported outcomes in benign multiple sclerosis. Mult Scler. 2011; 17(7):876–884.
  • Calabrese M, Agosta F, Rinaldi F, et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol. 2009; 66(9):1144–1150.
  • Calabrese M, Poretto V, Favaretto A, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012; 135(10):2952–2961.
  • Curti E, Graziuso S, Tsantes E, et al. Correlation between cortical lesions and cognitive impairment in multiple sclerosis. Brain Behav. 2018; 8(6):e00955
  • Rinaldi F, Calabrese M, Grossi P, et al. Cortical lesions and cognitive impairment in multiple sclerosis. Neurol Sci. 2010; 31(Suppl 2):S235–S237.
  • Calabrese M, Favaretto A, Martini V, et al. Grey matter lesions in MS: from histology to clinical implications. Prion. 2013; 7(1):20–27.
  • Calabrese M, Filippi M, Rovaris M, et al. Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult Scler. 2009; 15(1):36–41.
  • Calabrese M, Favaretto A, Poretto V, et al. Low degree of cortical pathology is associated with benign course of multiple sclerosis. Mult Scler. 2013; 19(7):904–911.
  • Laura DG, Silvia T, Nikolaos P, et al. The role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review. Neural Plast. 2018; 2018:3419871–3419871.
  • Labiano-Fontcuberta A, Martínez-Ginés ML, Aladro Y, et al. A comparison study of cognitive deficits in radiologically and clinically isolated syndromes. Mult Scler. 2016; 22(2):250–253.
  • Lebrun C, Blanc F, Brassat D, et al. Cognitive function in radiologically isolated syndrome. Mult Scler. 2010;16(8):919–925.,
  • Amato MP, Hakiki B, Goretti B, et al. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012;78(5):309–314.,
  • Menascu S, Stern M, Aloni R, et al. Assessing cognitive performance in radiologically isolated syndrome. Mult Scler Relat Disord. 2019; 32:70–73.
  • Granberg T, Martola J, Kristoffersen-Wiberg M, et al. Radiologically isolated syndrome-incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Mult Scler. 2013; 19(3):271–280.
  • Anhoque CF, Domingues SCA, Teixeira AL, et al. Cognitive impairment in clinically isolated syndrome: a systematic review. Dement Neuropsychol. 2010;4(2):86–90.,
  • Feuillet L, Reuter F, Audoin B, et al. Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler. 2007; 13(1):124–127.
  • Anhoque CF, Biccas Neto L, Domingues SCA, et al. Cognitive impairment in patients with clinically isolated syndrome. Dement Neuropsychol. 2012; 6(4):266–269.
  • Audoin B, Au Duong MV, Ranjeva J-P, et al. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp. 2005; 24(3):216–228.
  • Gajamange S, Shelton A, Clough M, et al. Functional correlates of cognitive dysfunction in clinically isolated syndromes. PLoS One. 2019; 14(7):e0219590
  • Nilsson P, Rorsman I, Larsson EM, et al. Cognitive dysfunction 24-31 years after isolated optic neuritis. Mult Scler. 2008; 14(7):913–918.
  • Summers M, Swanton J, Fernando K, et al. Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry. 2008; 79(8):955–958.
  • Feinstein A, Kartsounis LD, Miller DH, et al. Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric, and MRI follow up study. J Neurol Neurosurg Psychiatry. 1992; 55(10):869–876.
  • Reuter F, Zaaraoui W, Crespy L, et al. Frequency of cognitive impairment dramatically increases during the first 5 years of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2011; 82(10):1157–1159.
  • Chung KK, Altmann D, Barkhof F, et al. A 30-Year Clinical and Magnetic Resonance Imaging Observational Study of Multiple Sclerosis and Clinically Isolated Syndromes. Ann Neurol. 2020; 87(1):63–74.
  • Hynčicová E, Vyhnálek M, Kalina A, et al. Cognitive impairment and structural brain changes in patients with clinically isolated syndrome at high risk for multiple sclerosis. J Neurol. 2017; 264(3):482–493.
  • Pokryszko-Dragan A, Dziadkowiak E, Zagrajek M, et al. Cognitive performance, fatigue and event-related potentials in patients with clinically isolated syndrome. Clin Neurol Neurosurg. 2016; 149:68–74.
  • Khalil M, Enzinger C, Langkammer C, et al. Cognitive impairment in relation to MRI metrics in patients with clinically isolated syndrome. Mult Scler. 2011; 17(2):173–180.
  • Štecková T, Hluštík P, Sládková V, et al. Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis. J Neurol Sci. 2014; 342(1-2):62–68.
  • Diker S, Has AC, Kurne A, et al. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome. Mult Scler Relat Disord. 2016; 10:14–21.
  • Papadaki EZ, Simos PG, Panou T, et al. Hemodynamic evidence linking cognitive deficits in clinically isolated syndrome to regional brain inflammation. Eur J Neurol. 2014; 21(3):499–505.
  • Uher T, Benedict RHB, Horakova D, et al. Relationship between gray matter volume and cognitive learning in CIS patients on disease-modifying treatment. J Neurol Sci. 2014; 347(1-2):229–234.
  • Liu Y, Duan Y, Dong H, et al. Disrupted module efficiency of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Front Hum Neurosci. 2018; 12:138
  • Shu N, Duan Y, Huang J, et al. Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis. Neuroimage Clin. 2018; 19:232–239.
  • Collorone S, Prados F, Hagens MH, et al. Single-subject structural cortical networks in clinically isolated syndrome. Mult Scler. 2020;26(11):1392–1401.,
  • Shu N, Duan Y, Xia M, et al. Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci Rep. 2016; 6:29383
  • Moroso A, Ruet A, Lamargue-Hamel D, et al. Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017; 88(2):146–151.
  • Kinkel RP, Laforet G, You X. Disease-related determinants of quality of life 10 years after clinically isolated syndrome. Int J MS Care. 2015; 17(1):26–34.
  • Baldin E, Riise T, Mattarozzi K, et al. Health-related quality of life in clinically isolated syndrome and risk of conversion to multiple sclerosis. Neurol Sci. 2019;40(1):75–80.,
  • Anhoque CF, Biccas-Neto L, Domingues SCA, et al. Cognitive impairment is correlated with reduced quality of life in patients with clinically isolated syndrome. Arq Neuropsiquiatr. 2013; 71(2):74–77.
  • Hyncicova E, Kalina A, Vyhnalek M, et al. Health-related quality of life, neuropsychiatric symptoms and structural brain changes in clinically isolated syndrome. PLoS One. 2018; 13(7):e0200254
  • Cohen M, Brochet B, Clavelou P, et al. Cognition and quality of life in clinically isolated syndrome patients starting a disease modifying therapy in the QUALICIS study may not predict treatment response at one year. J Neurol Sci. 2017;382:73–78.,
  • Bergsland N, Zivadinov R, Dwyer MG, et al. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult Scler. 2016; 22(10):1327–1336.
  • Matias-Guiu JA, Cortés-Martínez A, Valles-Salgado M, et al. Functional components of cognitive impairment in multiple sclerosis: a cross-sectional investigation. Front Neurol. 2017; 8:643
  • Planche V, Ruet A, Coupé P, et al. Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler. 2017; 23(9):1214–1224.
  • Rocca MA, Morelli ME, Amato MP, et al. Regional hippocampal involvement and cognitive impairment in pediatric multiple sclerosis. Mult Scler. 2016; 22(5):628–640.
  • Yang H, Wang N, Luo X, et al. Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. Neuroimage Clin. 2019; 23:101891
  • Huang SY, Fan Q, Machado N, et al. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann Clin Transl Neurol. 2019; 6(5):882–892.
  • Batista S, d’Almeida OC, Afonso A, et al. Impairment of social cognition in multiple sclerosis: Amygdala atrophy is the main predictor. Mult Scler. 2017; 23(10):1358–1366.
  • Pravatà E, Rocca MA, Valsasina P, et al. Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis. Mult Scler. 2017; 23(14):1864–1874.
  • Santangelo G, Altieri M, Gallo A, et al. Does cognitive reserve play any role in multiple sclerosis? A meta-analytic study. Multiple Sclerosis and Related Disorders. 2019; 30:265–276.
  • Benedict RHB, Zivadinov R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol. 2011; 7(6):332–342.
  • Nocentini U, Pasqualetti P, Bonavita S, et al. Cognitive dysfunction in patients with relapsing-remitting multiple sclerosis. Mult Scler. 2006; 12(1):77–87.
  • Rocca MA, Barkhof F, De Luca J, MAGNIMS Study Group, et al. The hippocampus in multiple sclerosis. Lancet Neurol. 2018;17(10):918–926.,
  • Karavasilis E, Christidi F, Velonakis G, et al. Hippocampal structural and functional integrity in multiple sclerosis patients with or without memory impairment: a multimodal neuroimaging study. Brain Imaging Behav. 2019; 13(4):1049–1059.
  • Preziosa P, Pagani E, Mesaros S, et al. Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: A 5-year study. Hum Brain Mapp. 2017; 38(11):5648–5665.
  • Paul F. Pathology and MRI: exploring cognitive impairment in MS. Acta Neurol Scand. 2016; 134 Suppl 200(Suppl 200):24–33.
  • Nasios G, Messinis L, Dardiotis E, et al. Repetitive transcranial magnetic stimulation, cognition, and multiple sclerosis: an overview. Behav Neurol. 2018;2018:8584653,
  • Vollmer T, Huynh L, Kelley C, et al. Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review. Neurol Sci. 2016; 37(2):165–179.
  • Granberg T, Martola J, Bergendal G, et al. Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: Results of a 17-year longitudinal study. Mult Scler. 2015; 21(9):1151–1158.
  • Jehna M, Neuper C, Petrovic K, et al. An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clin Neurol Neurosurg. 2010; 112(6):482–484.
  • Hälbig TD, Wüstenberg T, Giess RM, et al. Emotional experience in patients with clinically isolated syndrome and early multiple sclerosis. Eur J Neurol. 2020; 27(8):1537–1545.
  • Iaffaldano P, Viterbo RG, Goretti B, et al. Emotional and neutral verbal memory impairment in Multiple Sclerosis. J Neurol Sci. 2014; 341(1-2):28–31.
  • Prakash RS, Snook EM, Lewis JM, et al. Cognitive impairments in relapsing-remitting multiple sclerosis: a meta-analysis. Mult Scler. 2008; 14(9):1250–1261.
  • Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017; 23(9):1258–1267.
  • Amato MP, Ponziani G, Pracucci G, et al. Cognitive Impairment in Early-Onset Multiple sclerosis. Pattern, predictors, and impact on everyday life in a 4-year follow-up . Arch Neurol. 1995; 52(2):168–172.
  • Deloire MSA, Ruet A, Hamel D, et al. MRI predictors of cognitive outcome in early multiple sclerosis. Neurology. 2011; 76(13):1161–1167.
  • Deloire MSA, Salort E, Bonnet M, et al. Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005; 76(4):519–526.
  • Migliore S, Ghazaryan A, Simonelli I, et al. Cognitive impairment in relapsing-remitting multiple sclerosis patients with very mild clinical disability. Behav Neurol. 2017; 2017:7404289
  • Schulz D, Kopp B, Kunkel A, et al. Cognition in the early stage of multiple sclerosis. J Neurol. 2006; 253(8):1002–1010.
  • Amato MP, Portaccio E, Goretti B, et al. Cognitive impairment in early stages of multiple sclerosis. Neurol Sci. 2010; 31(S2):211–214.
  • Pitteri M, Ziccardi S, Dapor C, et al. Lost in classification: lower cognitive functioning in apparently cognitive normal newly diagnosed RRMS patients. Brain Sciences. 2019; 9(11):321.
  • Strober LB, Rao SM, Lee J-C, et al. Cognitive impairment in multiple sclerosis: An 18 year follow-up study. Mult Scler Relat Disord. 2014; 3(4):473–481.
  • Deloire M, Ruet A, Hamel D, et al. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler. 2010; 16(5):581–587.
  • Schwid SR, Goodman AD, Weinstein A, Copaxone Study Group, et al. Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci. 2007;255(1-2):57–63.,
  • Ruet A, Deloire M, Hamel D, et al. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: a 7-year longitudinal study. J Neurol. 2013; 260(3):776–784.
  • Damasceno A, Pimentel-Silva LR, Damasceno BP, et al. Cognitive trajectories in relapsing-remitting multiple sclerosis: A longitudinal 6-year study. Mult Scler. 2020; 26(13):1740–1751.
  • Giedraitiene N, Kaubrys G. Distinctive pattern of cognitive disorders during multiple sclerosis relapse and recovery based on computerized CANTAB tests. Front Neurol. 2019; 10:572–572.
  • Benedict RH, et al. Recovery of cognitive function after relapse in multiple sclerosis. Mult Scler. 2021;27(1):71–78.
  • Giedraitiene N, Kaubrys G, Kizlaitiene R. Cognition during and after multiple sclerosis relapse as assessed with the brief international cognitive assessment for multiple sclerosis. Sci Rep. 2018; 8(1):8169–8169.
  • Amato MP, Zipoli V, Portaccio E. Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies. J Neurol Sci. 2006; 245(1-2):41–46.
  • Grech LB, Kiropoulos LA, Kirby KM, et al. Executive function is an important consideration for coping strategy use in people with multiple sclerosis. J Clin Exp Neuropsychol. 2017; 39(8):817–831.
  • Camp SJ, Stevenson VL, Thompson AJ, et al. A longitudinal study of cognition in primary progressive multiple sclerosis. Brain. 2005; 128(Pt 12):2891–2898.
  • Denney DR, Lynch SG, Parmenter BA. A 3-year longitudinal study of cognitive impairment in patients with primary progressive multiple sclerosis: Speed matters. J Neurol Sci. 2008; 267(1-2):129–136.
  • Eijlers AJC, van Geest Q, Dekker I, et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018; 141(9):2605–2618.
  • Connick P, Chandran S, Bak TH. Patterns of cognitive dysfunction in progressive MS. Behav Neurol. 2013; 27(3):259–265.
  • De Sonneville LMJ, Boringa JB, Reuling IEW, et al. Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia. 2002; 40(11):1751–1765.
  • Denney DR, Sworowski LA, Lynch SG. Cognitive impairment in three subtypes of multiple sclerosis. Arch Clin Neuropsychol. 2005; 20(8):967–981.
  • Foong J, Rozewicz L, Chong WK, et al. A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol. 2000; 247(2):97–101.
  • Huijbregts SCJ, Kalkers NF, de Sonneville LMJ, et al. Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology. 2004; 63(2):335–339.
  • Tong MT, Peace ST, Cleland TA. Properties and mechanisms of olfactory learning and memory. Front Behav Neurosci. 2014; 8(:238
  • Ouellet J, Scherzer PB, Rouleau I, et al. Assessment of social cognition in patients with multiple sclerosis. J Int Neuropsychol Soc. 2010; 16(2):287–296.
  • Czekoova K, Shaw DJ, Saxunová K, et al. Impaired self-other distinction and subcortical gray-matter alterations characterize socio-cognitive disturbances in multiple sclerosis. Front Neurol. 2019; 10:525.
  • Patti F, Amato MP, Trojano M, et al. Longitudinal changes in social functioning in mildly disabled patients with relapsing-remitting multiple sclerosis receiving subcutaneous interferon beta-1a: results from the COGIMUS (COGnitive Impairment in MUltiple Sclerosis) study (II). Qual Life Res. 2012; 21(7):1111–1121.
  • Ciampi E, Uribe-San-Martin R, Vásquez M, et al. Relationship between Social Cognition and traditional cognitive impairment in Progressive Multiple Sclerosis and possible implicated neuroanatomical regions. Mult Scler Relat Disord. 2018; 20:122–128.
  • Kraemer M, Herold M, Uekermann J, et al. Theory of mind and empathy in patients at an early stage of relapsing remitting multiple sclerosis. Clinical Neurology and Neurosurgery. 2013; 115(7):1016–1022.
  • Henry JD, Phillips LH, Beatty WW, et al. Evidence for deficits in facial affect recognition and theory of mind in multiple sclerosis. J Int Neuropsychol Soc. 2009; 15(2):277–285.
  • Pottgen J, Dziobek I, Reh S, et al. Impaired social cognition in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013; 84(5):523–528.
  • Pitteri M, Genova H, Lengenfelder J, et al. Social cognition deficits and the role of amygdala in relapsing remitting multiple sclerosis patients without cognitive impairment. Mult Scler Relat Disord. 2019; 29:118–123.
  • Sofologi M, et al. Analyzing social cognition and understanding of social inferences in patients with multiple sclerosis. A comparative study. Hell J Nucl Med. 2019; 22 (Suppl 2):15–26.
  • Almeida MB, Going LC, Fragoso YD. Patients with multiple sclerosis present low levels of empathy. Arq Neuropsiquiatr. 2016; 74(12):982–985.
  • Banati M, Sandor J, Mike A, et al. Social cognition and Theory of Mind in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2010; 17(3):426–433.
  • van der Hiele K, et al. Empathy in multiple sclerosis––Correlates with cognitive, psychological and occupational functioning. Multiple Sclerosis Rela Disorders. 2020;41: 1–8.
  • Benedict RH, Priore RL, Miller C, et al. Personality disorder in multiple sclerosis correlates with cognitive impairment. J Neuropsychiatry Clin Neurosci. 2001; 13(1):70–76.
  • Blair RJ. Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Conscious Cogn. 2005; 14(4):698–718.
  • Krause M, Wendt J, Dressel A, et al. Prefrontal function associated with impaired emotion recognition in patients with multiple sclerosis. Behav Brain Res. 2009; 205(1):280–285.
  • Kraemer M, Herold M, Uekermann J, et al. Perception of affective prosody in patients at an early stage of relapsing-remitting multiple sclerosis. J Neuropsychol. 2013; 7(1):91–106.
  • Ross ED, Monnot M. Affective prosody: what do comprehension errors tell us about hemispheric lateralization of emotions, sex and aging effects, and the role of cognitive appraisal. Neuropsychologia. 2011; 49(5):866–877.
  • De Looze C, Moreau N, Renié L, et al. Effects of cognitive impairment on prosodic parameters of speech production planning in multiple sclerosis. J Neuropsychol. 2019; 13(1):22–45.
  • Feenaughty L, Tjaden K, Weinstock-Guttman B, et al. Separate and combined influence of cognitive impairment and dysarthria on functional communication in multiple sclerosis. Am J Speech Lang Pathol. 2018; 27(3):1051–1065.
  • Friedova L, Rusz J, Motyl J, et al. Slowed articulation rate is associated with information processing speed decline in multiple sclerosis: A pilot study. J Clin Neurosci. 2019; 65:28–33.
  • Mackenzie C, Green J. Cognitive-linguistic deficit and speech intelligibility in chronic progressive multiple sclerosis. Int J Lang Commun Disord. 2009; 44(4):401–420.
  • Rodgers JD, Tjaden K, Feenaughty L, et al. Influence of cognitive function on speech and articulation rate in multiple sclerosis. J Int Neuropsychol Soc. 2013; 19(2):173–180.
  • Forn C, Belenguer A, Parcet-Ibars MA, et al. Information-processing speed is the primary deficit underlying the poor performance of multiple sclerosis patients in the Paced Auditory Serial Addition Test (PASAT). J Clin Exp Neuropsychol. 2008; 30(7):789–796.
  • Phillips LH, Henry JD, Scott C, et al. Specific impairments of emotion perception in multiple sclerosis. Neuropsychology. 2011; 25(1):131–136.
  • Nourbakhsh B, Julian L, Waubant E. Fatigue and depression predict quality of life in patients with early multiple sclerosis: a longitudinal study. Eur J Neurol. 2016; 23(9):1482–1486.
  • Harding KE, Liang K, Cossburn MD, et al. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2013; 84(2):141–147.
  • Simone IL, Carrara D, Tortorella C, et al. Course and prognosis in early-onset MS: comparison with adult-onset forms. Neurology. 2002; 59(12):1922–1928.
  • Banwell B, Ghezzi A, Bar-Or A, et al. Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol. 2007; 6(10):887–902.
  • Banwell BL, Anderson PE. The cognitive burden of multiple sclerosis in children. Neurology. 2005; 64(5):891–894.
  • Charvet LE, O'Donnell EH, Belman AL, et al. Longitudinal evaluation of cognitive functioning in pediatric multiple sclerosis: report from the US Pediatric Multiple Sclerosis Network. Mult Scler. 2014;20(11):1502–1510.,
  • Kapanci T, Rostásy K, Häusler MG, et al. Evaluating the relationship between psychometric intelligence and cognitive functions in paediatric multiple sclerosis. Mult Scler J Exp Transl Clin. 2019; 5(4):2055217319894365–2055217319894365.
  • Amato MP, Goretti B, Ghezzi A, For the Multiple Sclerosis Study Group of the Italian Neurological Society, et al. Cognitive and psychosocial features of childhood and juvenile MS. Neurology. 2008;70(20):1891–1897.,
  • Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008; 31(7):361–370.
  • Julian L, Serafin D, Charvet L, et al. Cognitive impairment occurs in children and adolescents with multiple sclerosis: results from a United States network. J Child Neurol. 2013;28(1):102–107.,
  • Paus T, Collins DL, Evans AC, et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull. 2001; 54(3):255–266.
  • Wuerfel E, Weddige A, Hagmayer Y, et al. Cognitive deficits including executive functioning in relation to clinical parameters in paediatric MS patients. PLoS One. 2018; 13(3):e0194873
  • MacAllister WS, Christodoulou C, Milazzo M, et al. Longitudinal Neuropsychological Assessment in Pediatric Multiple Sclerosis. Dev Neuropsychol. 2007; 32(2):625–644.
  • Amato MP, Goretti B, Ghezzi A, et al. Neuropsychological features in childhood and juvenile multiple sclerosis: five-year follow-up. Neurology. 2014;83(16):1432–1438.,
  • Amato MP, Goretti B, Ghezzi A, et al. Cognitive and psychosocial features in childhood and juvenile MS: two-year follow-up. Neurology. 2010;75(13):1134–1140.,
  • Till C, Racine N, Araujo D, et al. Changes in cognitive performance over a 1-year period in children and adolescents with multiple sclerosis. Neuropsychology. 2013; 27(2):210–219.
  • Hosseini B, Flora DB, Banwell BL, et al. Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. J Int Neuropsychol Soc. 2014; 20(8):796–804.
  • Baruch NF, O’Donnell EH, Glanz BI, et al. Cognitive and patient-reported outcomes in adults with pediatric-onset multiple sclerosis. Mult Scler. 2016; 22(3):354–361.
  • Lanzillo R, Chiodi A, Carotenuto A, et al. Quality of life and cognitive functions in early onset multiple sclerosis. Eur J Paediatr Neurol. 2016; 20(1):158–163.
  • Mowry EM, Julian LJ, Im-Wang S, et al. Health-related quality of life is reduced in pediatric multiple sclerosis. Pediatr Neurol. 2010; 43(2):97–102.
  • Green R, Adler A, Banwell BL, et al. Involvement of the Amygdala in Memory and Psychosocial Functioning in Pediatric-Onset Multiple Sclerosis. Dev Neuropsychol. 2018; 43(6):524–534.
  • Stojanov J, Stojanov A. A cross-sectional study of alexithymia in patients with relapse remitting form of multiple sclerosis. J Postgrad Med. 2020; 66(1):23–27.
  • Eboni ACB, Cardoso M, Dias FM, et al. High levels of alexithymia in patients with multiple sclerosis. Dement Neuropsychol. 2018; 12(2):212–215.
  • Chahraoui K, Duchene C, Rollot F, et al. Longitudinal study of alexithymia and multiple sclerosis. Brain Behav. 2014; 4(1):75–82.
  • Capet N, Joly H, Suply C, et al. Alexithymia in multiple sclerosis: Clinical and radiological correlations. Rev Neurol (Paris), 2020. DOI:10.1016/j.neurol.2020.06.008
  • Portaccio E, Goretti B, Zipoli V, et al. Cognitive rehabilitation in children and adolescents with multiple sclerosis. Neurol Sci. 2010; 31(Suppl 2):S275–S278.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.