279
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Cell cycle deregulation in neurodegenerative diseases

, &
Pages 408-416 | Received 26 Aug 2019, Accepted 24 Apr 2021, Published online: 27 Sep 2021

References

  • Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 2002;419(6905):367–374.
  • Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest. 2003;111(6):785–793.
  • Vincent I, Jicha G, Rosado M, et al. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci. 1997;17(10):3588–3598.
  • Hradek AC, Lee HP, Siedlak SL, et al. Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer’s disease patients. JAD. 2014;43(1):57–65.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226(2):352–364.
  • Chen MJ, Ng JM, Peng ZF, et al. Gene profiling identifies commonalities in neuronal pathways in excitotoxicity: evidence favouring cell cycle re-activation in concert with oxidative stress. Neurochem Int. 2013;62(5):719–730.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002;181–182:475–481.
  • Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle. Genes Cells. 2002;7(6):523–534.
  • Fischer PM, Endicott J, Meijer L. Cyclin-dependent kinase inhibitors. Prog Cell Cycle Res. 2003;5:235–248.
  • Bashari D, Hacohen D, Ginsberg D. JNK activation is regulated by E2F and promotes E2F1-induced apoptosis. Cell Signal. 2011;23(1):65–70.
  • Manchado E, Eguren M, Malumbres M. The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans. 2010;38(1):65–71.
  • Kannan M, Lee SJ, Schwedhelm-Domeyer N, et al. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS One. 2012;7(11):e50735.
  • Almeida A. Regulation of APC/C-Cdh1 and its function in neuronal survival. Mol Neurobiol. 2012;46(3):547–554.
  • Yao W, Qian W, Zhu C, et al. Cdh1-APC is involved in the differentiation of neural stem cells into neurons. Neuroreport. 2010;21(1):39–44.
  • Elias J, Dimitrio L, Clairambault J, et al. The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate. Biochim Biophys Acta. 2014;1844(1):232–247.
  • Eguren M, Manchado E, Malumbres M. Non-mitotic functions of the Anaphase-Promoting Complex. Semin Cell Dev Biol. 2011;22(6):572–578.
  • Dai Y, Grant S. Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents. Curr Oncol Rep. 2004;6(2):123–130.
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.
  • Shakya A, Cooksey R, Cox JE, et al. Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol. 2009;11(3):320–327.
  • Hernandez-Ortega K, Quiroz-Baez R, Arias C. Cell cycle reactivation in mature neurons: a link with brain plasticity, neuronal injury and neurodegenerative diseases?Neurosci Bull. 2011;27(3):185–196.
  • Malik B, Currais A, Andres A, et al. Loss of neuronal cell cycle control as a mechanism of neurodegeneration in the presenilin-1 Alzheimer’s disease brain. Cell Cycle. 2008;7(5):637–646.
  • Absalon S, Kochanek DM, Raghavan V, et al. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33(37):14645–14659.
  • Zekanowski C, Wojda U. Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer’s disease. Acta Neurobiol Exp (Wars). 2009;69(2):232–253.
  • Saad O, Carine J, NoeL G. “Till Death Do Us Part”: a potential irreversible link between aberrant cell cycle control and neurodegeneration in the adult olfactory bulb. Front Neurosci. 2018;12:144.
  • Esteras N, Alquézar C, Bartolomé F, et al. G1/S cell cycle checkpoint dysfunction in lymphoblasts from sporadic parkinson’s disease patients. Mol Neurobiol. 2015;52(1):386–398.
  • Ranganathan S, Bowser R. Alterations in G1 to S phase cell cycle regulators during amyotrophic lateral sclerosis. Am J Pathol. 2003;162(3):823–835.
  • Bhaskar K, Miller M, Chludzinski A, et al. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener. 2009;4(1):14–31.
  • Park DS, Morris EJ, Padmanabhan J, et al. Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol. 1998;143(2):457–467.
  • Dubinina EE, Schedrina LV, Neznanov NG, et al. Oxidative stress and its effect on cells functional activity of alzheimer’s disease. Biomed Khim. 2015;61(1):57–69.
  • Verdaguer E, Garcia-Jorda E, Canudas AM, et al. Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport. 2002;13(4):413–416.
  • Barrio-Alonso E, et al. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci Rep. 2018;8:14316. 
  • McShea A, Lee HG, Petersen RB, et al. Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta. 2007;1772(4):467–472.
  • Schmetsdorf S, Arnold E, Holzer M, et al. A putative role for cell cycle-related proteins in microtubule-based neuroplasticity. Eur J Neurosci. 2009;29(6):1096–1107.
  • Yang Y, Varvel NH, Lamb BT, et al. Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci. 2006;26(3):775–784.
  • Thakur A, Siedlak SL, James SL, et al. Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease. Int J Clin Exp Pathol. 2008;1:134–146.
  • Almeida A, Bolanos JP, Moreno S. Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci. 2005;25(36):8115–8121.
  • Liu DY, Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer’s disease. Eur Rev Med Pharmacol Sci. 2019;23(19):8523–8532.
  • Chu T, Shu Y, Qu Y, et al. miR-26b inhibits total neurite outgrowth, promotes cells apoptosis and downregulates neprilysin in Alzheimer’s disease. Int J Clin Exp Path. 2018;11(7):3383–3390.
  • Arendt T, Holzer M, Gartner U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J Neural Transm (Vienna). 1998;105(8–9):949–960.
  • Arendt T, Rodel L, Gartner U, et al. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport. 1996;7:3047–3049.
  • Silva AR, Santos AC, Farfel JM, et al. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer’s disease. PLoS One. 2014;9(6):e99897.
  • Yates SC, Zafar A, Rabai EM, et al. The effects of two polymorphisms on p21cip1 function and their association with Alzheimer’s disease in a population of European descent. PLoS One. 2015;10(1):e114050.
  • Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–622. [10604467]
  • Zhou J, Li H, Li X, et al. The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci. 2015;35(6):2624–2635.
  • Wen Y, Yu WH, Maloney B, et al. Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron. 2008;57(5):680–690. [18341989]
  • Shen LL, Li WW, Xu YL, et al. Neurotrophin receptor p75 mediates amyloid beta-induced tau pathology. Neurobiol Dis. 2019;132:104567.
  • Huang F, Wang M, Liu R, et al. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer’s disease. Alzhmer’s Dement. 2018;15(2):217–231.
  • Huang Y, Huang W, Huang Y, et al. Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 transgenic mice. J Alzheimers Dis. 2020;74(4):1231–1242.
  • Hoon LK, Sei-Jung L, Jik LH, et al. Amyloid β1-42 (Aβ1-42) induces the CDK2-mediated phosphorylation of tau through the activation of the mTORC1 signaling pathway while promoting neuronal cell death. Front Mol Neurosci. 2017;10:229.
  • Furuya T, Kim M, Lipinski M, et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell. 2010;38(4):500–511. [20513426]
  • Przedborski S, Jackson-Lewis V, Naini AB, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem. 2001;76(5):1265–1274.
  • Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann Neurol. 1998;44:S72–S84.
  • Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(9):3585–3590.
  • Smith PD, Crocker SJ, Jackson-Lewis V, et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s ­disease. Proc Natl Acad Sci U S A. 2003;100(23):13650–13655.
  • Wong ASL, Lee RHK, Cheung AY, et al. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol. 2011;13(5):568–579. [21499257]
  • Hongcai W, Yan C, Jinbo C, et al. Cell cycle regulation of DNA polymerase beta in rotenone-based parkinson’s disease models. PLoS One. 2014;9(10):e109697.
  • El-Khodor BF, Oo TF, Kholodilov N, et al. Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Exp Neurol. 2003;179(1):17–27.
  • Wen Z, Shu Y, Gao C, et al. CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson’s disease. Neurobiol Aging. 2014;35(12):2870–2880.
  • Pan H, Yin C, Dyson NJ, et al. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell. 1998;2(3):283–292.
  • Jordan-Sciutto KL, Dorsey R, Chalovich EM, et al. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol. 2003;62(1):68–74.
  • Chen Y, Hou Y, Ge R, et al. Protective effect of roscovitine against rotenone-induced parkinsonism. Restor Neurol Neurosci. 2018;36:629–638.
  • Rodriguez-Blanco J, Martin V, Herrera F, et al. Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem. 2008;107(1):127–140.
  • Gallastegui E, Domuro C, Serratosa J, et al. p27 Kip1 regulates alpha-synuclein expression. Oncotarget. 2018;9(23):16368–16379.
  • Sasaki T, Mochizuki H. Neuroprotective effects of Necdin in the Parkinson’s disease. Nihon Rinsho. 2017;75(1):36–41.
  • Bajaj NPS, Al-Sarraj ST, Leigh PN, et al. Cyclin dependent kinase-5 (CDK-5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurones in ALS. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23(5):833–850. [10509378]
  • Nguyen MD, Boudreau M, Kriz J, et al. Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci. 2003;23(6):2131–2140.
  • Yujiao Y, Tadashi N, Akane M, et al. Pathogenic mutations in the ALS gene CCNF cause cytoplasmic mislocalization of Cyclin F and elevated VCP ATPase activity. Hum Mol Genet. 2019;20:20.
  • Appert-Collin A, Hugel B, Levy R, et al. Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci. 2006;79(5):484–490.
  • Binukumar BK, Skuntz S, Prochazkova M, et al. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Hum Mol Genet. 2019:28(19):3175–3187.
  • Cova E, Ghiroldi A, Guareschi S, et al. G93A SOD1 alters cell cycle in a cellular model of Amyotrophic Lateral Sclerosis. Cell Signal. 2010;22(10):1477–1484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.