186
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of bonding area geometry on the behavior of composite single lap joints (SLJ) and estimation of adhesive properties using finite element method

ORCID Icon, &
Pages 686-708 | Received 20 Apr 2023, Accepted 19 Aug 2023, Published online: 27 Aug 2023

References

  • Ciardiello, R.; Boursier Niutta, C.; Di Sciullo, F.; Goglio, L. Single-Lap Joints of Similar and Dissimilar Adherends Bonded with a Polyurethane Adhesive Used in the Automotive Industry. IOP Conf. Ser Mater. Sci. Eng. 2021, 1038(1), 012031. DOI: 10.1088/1757-899x/1038/1/012031.
  • Chang, B.; Shi, Y.; Dong, S. Comparative Studies on Stresses in Weld-Bonded, Spot-Welded and Adhesive-Bonded Joints. J. Mater. Process. Technol. 1999, 87(1–3), 230–236. DOI: 10.1016/S0924-0136(98)00355-0.
  • Banea, M. D.; da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219.
  • Kim, K. S.; Yi, Y. M.; Cho, G.-R.; Kim, C. G. Failure Prediction and Strength Improvement of Uni-Directional Composite Single Lap Bonded Joints. Compos. Struct. 2008, 82(4), 513–520. DOI: 10.1016/j.compstruct.2007.02.005.
  • Giannopoulos, I. K.; Doroni-Dawes, D.; Kourousis, K. I.; Yasaee, M. Effects of Bolt Torque Tightening on the Strength and Fatigue Life of Airframe FRP Laminate Bolted Joints. Compos. B Eng. 2017, 125, 19–26. DOI: 10.1016/j.compositesb.2017.05.059.
  • Vadean, A.; Abusrea, M.; Shazly, M.; Michel, A.; Kaabi, A.; Boukhili, R. Improvement of Scarf Repair Patch Shape for Composite Aircraft Structures. J. Adhes. 2023, 99, 1044–1070. DOI: 10.1080/00218464.2022.2078196.
  • Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large Deformation Rate-Dependent Stress–Strain Behavior of Polyurea and Polyurethanes. Polymer (Guildf.). 2006, 47(1), 319–329. DOI: 10.1016/j.polymer.2005.10.107.
  • Berntsen, J. F.; Morin, D.; Clausen, A. H.; Langseth, M. Experimental Investigation and Numerical Modelling of the Mechanical Response of a Semi-Structural Polyurethane Adhesive. Int. J. Adhes. Adhes. 2019, 95, 102395. DOI: 10.1016/j.ijadhadh.2019.102395.
  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G. The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. J. Adhes. 2015, 91(5), 331–346. DOI: 10.1080/00218464.2014.903802.
  • Benelli, A.; Ciardiello, R.; Boursier Niutta, C.; Goglio, L. Experimental and Numerical Characterization of Adhesive Joints with Composite Substrates by Means of the Arcan Test. Int. J. Adhes. Adhes. 2023, 122, 103321. DOI: 10.1016/J.IJADHADH.2022.103321.
  • Özel, A.; Aydin, M.; Temiż, Ş. The Effects of Overlap Length and Adherend Thickness on the Strength of Adhesively Bonded Joints Subjected to Bending Moment. J. Adhes. Sci. Technol. 2004, 18, 313–325. DOI: 10.1163/156856104773635454.
  • Aydin, M. D.; Özel, A.; Temiz, Ş. The Effect of Adherend Thickness on the Failure of Adhesively-Bonded Single-Lap Joints. J. Adhes. Sci. Technol. 2005, 19, 705–718. DOI: 10.1163/1568561054890499.
  • Gültekin, K.; Akpinar, S.; Özel, A. The Effect of the Adherend Width on the Strength of Adhesively Bonded Single-Lap Joint: Experimental and Numerical Analysis. Compos. B Eng. 2014, 60, 736–745. DOI: 10.1016/J.COMPOSITESB.2014.01.022.
  • Kadioglu, F. Effects of Compressive Applied Load on the Adhesive Single Lap Joint with Different Parameters. J. Adhes. 2022, 98, 390–411. DOI: 10.1080/00218464.2020.1834390.
  • Kanani, A. Y.; Hou, X.; Ye, J. A Novel Dissimilar Single-Lap Joint with Interfacial Stiffness Improvement. Compos. Struct. 2020, 252, 112741. DOI: 10.1016/J.COMPSTRUCT.2020.112741.
  • Kanani, A. Y.; Hou, X.; Ye, J. The Influence of Notching and Mixed-Adhesives at the Bonding Area on the Strength and Stress Distribution of Dissimilar Single-Lap Joints. Compos. Struct. 2020, 241, 112136. DOI: 10.1016/J.COMPSTRUCT.2020.112136.
  • Budhe, S.; Banea, M. D.; de Barros, S.; da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/J.IJADHADH.2016.10.010.
  • Reis, P. N. B.; Antunes, F. J. V.; Ferreira, J. A. M. Influence of Superposition Length on Mechanical Resistance of Single-Lap Adhesive Joints. Compos. Struct. 2005, 67, 125–133. DOI: 10.1016/J.COMPSTRUCT.2004.01.018.
  • Fernández-Cañadas, L. M.; Ivañez, I.; Sanchez-Saez, S.; Barbero, E. J. Effect of Adhesive Thickness and Overlap on the Behavior of Composite Single-Lap Joints. Mech. Adv. Mat. Struct. 2021, 28, 1111–1120. DOI: 10.1080/15376494.2019.1639086.
  • Moya-Sanz, E. M.; Ivañez, I.; Garcia-Castillo, S. K. Effect of the Geometry in the Strength of Single-Lap Adhesive Joints of Composite Laminates Under Uniaxial Tensile Load. Int. J. Adhes. Adhes. 2017, 72, 23–29. DOI: 10.1016/J.IJADHADH.2016.10.009.
  • Cui, J.; Wang, S.; Wang, S.; Chen, S.; Li, G. Strength and Failure Analysis of Adhesive Single-Lap Joints Under Shear Loading: Effects of Surface Morphologies and Overlap Zone Parameters. J. Manuf. Process. 2020, 56, 238–247. DOI: 10.1016/J.JMAPRO.2020.04.042.
  • Ciardiello, R.; D’Angelo, D.; Cagna, L.; Croce, A.; Paolino, D. S. Effects of Plasma Treatments of Polypropylene Adhesive Joints Used in the Automotive Industry. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236, 6204–6218. DOI: 10.1177/09544062211065361.
  • Kim, J. G.; Choi, I.; Lee, D. G.; Seo, I. S. Flame and Silane Treatments for Improving the Adhesive Bonding Characteristics of Aramid/Epoxy Composites. Compos. Struct. 2011, 93, 2696–2705. DOI: 10.1016/J.COMPSTRUCT.2011.06.002.
  • Avendaño, R.; Carbas, R. J. C.; Marques, E. A. S.; da Silva, L. F. M.; Fernandes, A. A. Effect of Temperature and Strain Rate on Single Lap Joints with Dissimilar Lightweight Adherends Bonded with an Acrylic Adhesive. Compos. Struct. 2016, 152, 34–44. DOI: 10.1016/J.COMPSTRUCT.2016.05.034.
  • Abbasi, M.; Ciardiello, R.; Goglio, L. Experimental Study on the Effect of Bonding Area Dimensions on the Mechanical Behavior of Composite Single-Lap Joint with Epoxy and Polyurethane Adhesives. Appl. Sci. 2023, 13(13), 7683. DOI: 10.3390/app13137683.
  • da Silva Lucas, F. M.; Carbas, R. J. C.; Critchlow, G. W.; Figueiredo, M. V.; Brown, K. Effect of Material, Geometry, Surface Treatment and Environment on the Shear Strength of Single Lap Joints. Int. J. Adhes. Adhes. 2009, 29(6), 621–632. DOI: 10.1016/j.ijadhadh.2009.02.012.
  • Xu, W.; Wei, Y. Strength and Interface Failure Mechanism of Adhesive Joints. Int. J. Adhes. Adhes. 2012, 34, 80–92. DOI: 10.1016/j.ijadhadh.2011.12.004.
  • Kadioglu, F.; Avil, E.; Ercan, M. E.; Aydogan, T. Effects of Different Overlap Lengths and Composite Adherend Thicknesses on the Performance of Adhesively-Bonded Joints Under Tensile and Bending Loadings. IOP Conf. Ser Mater. Sci. Eng. 2018, 369, 012034. DOI: 10.1088/1757-899X/369/1/012034.
  • Adams, R. D.; Peppiatt, N. A. Stress Analysis of Adhesive-Bonded Lap Joints. J. Strain Anal. 1974, 9(3), 185–196. DOI: 10.1243/03093247V093185.
  • Grant, L. D. R.; Adams, R. D.; da Silva, L. F. M. Experimental and Numerical Analysis of Single-Lap Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2009, 29(4), 405–413. DOI: 10.1016/J.IJADHADH.2008.09.001.
  • Reis, P. N. B.; Ferreira, J. A. M.; Antunes, F. Effect of Adherend’s Rigidity on the Shear Strength of Single Lap Adhesive Joints. Int J Adhes Adhesive. 2011, 31, 193–201. DOI: 10.1016/J.IJADHADH.2010.12.003. 4
  • Martínez, M. A.; de Armentia, S. L.; Abenojar, J. Influence of Sample Dimensions on Single Lap Joints: Effect of Interactions Between Parameters. J. Adhes. 2020, 97(14), 1358–1369. DOI: 10.1080/00218464.2020.1771313.
  • Floros, I. S.; Tserpes, K. I.; Löbel, T. Mode-I, Mode-II and Mixed-Mode I+II Fracture Behavior of Composite Bonded Joints: Experimental Characterization and Numerical Simulation. Compos. B Eng. 2015, 78, 459–468. DOI: 10.1016/J.COMPOSITESB.2015.04.006.
  • Pirondi, A.; Giuliese, G.; Moroni, F.; Bernasconi, A.; Jamil, A. Comparative Study of Cohesive Zone and Virtual Crack Closure Techniques for Three-Dimensional Fatigue Debonding. J. Adhes. 2014, 90, 457–481. DOI: 10.1080/00218464.2013.859616.
  • Panigrahi, S. K.; Pradhan, B. Three Dimensional Failure Analysis and Damage Propagation Behavior of Adhesively Bonded Single Lap Joints in Laminated FRP Composites. J. Reinf. Plast. Compos. 2007, 26(2), 183–201. DOI: 10.1177/0731684407070026.
  • de Miguel, A. G.; Pagani, A.; Carrera, E. Free-Edge Stress Fields in Generic Laminated Composites via Higher-Order Kinematics. Compos. B Eng. 2019, 168, 375–386. DOI: 10.1016/J.COMPOSITESB.2019.03.047.
  • Ramalho, L. D. C.; Campilho, R. D. S. G.; Belinha, J.; da Silva, L. F. M. Static Strength Prediction of Adhesive Joints: A Review. Int. J. Adhes. Adhes. 2020, 96, 102451. DOI: 10.1016/J.IJADHADH.2019.102451.
  • Shet, C.; Chandra, N. Effect of the Shape of T–δ Cohesive Zone Curves on the Fracture Response. Mech. Adv. Mat. Struct. 2004, 11(3), 249–275. DOI: 10.1080/15376490490427207.
  • Li, G.; Li, C. Assessment of Debond Simulation and Cohesive Zone Length in a Bonded Composite Joint. Compos. B Eng. 2015, 69, 359–368. DOI: 10.1016/J.COMPOSITESB.2014.10.024.
  • Fernández-Cañadas, L. M.; Iváñez, I.; Sanchez-Saez, S. Influence of the Cohesive Law Shape on the Composite Adhesively-Bonded Patch Repair Behaviour. Compos. B Eng. 2016, 91, 414–421. DOI: 10.1016/J.COMPOSITESB.2016.01.056.
  • de Moura, M. F. S. F.; Chousal, J. A. G. Cohesive and Continuum Damage Models Applied to Fracture Characterization of Bonded Joints. Int. J. Mech. Sci. 2006, 48(5), 493–503. DOI: 10.1016/J.IJMECSCI.2005.12.008.
  • de Moura MFSF; Gonçalves, J. P. M.; Chousal, J. A. G.; Campilho, R. D. S. G.; De Moura, M. F. S. F. Cohesive and Continuum Mixed-Mode Damage Models Applied to the Simulation of the Mechanical Behaviour of Bonded Joints. Int. J. Adhes. Adhes. 2008, 28(8), 419–426. DOI: 10.1016/J.IJADHADH.2008.04.004.
  • Ji, G.; Ouyang, Z.; Li, G. Effects of Bondline Thickness on Mode-I Nonlinear Interfacial Fracture of Laminated Composites: An Experimental Study. Compos. B Eng. 2013, 47, 1–7. DOI: 10.1016/J.COMPOSITESB.2012.10.048.
  • Pereira, F. A. M.; de Moura, M. F. S. F.; Dourado, N.; Morais, J. J. L.; Xavier, J.; Dias, M. I. R. Direct and Inverse Methods Applied to the Determination of Mode I Cohesive Law of Bovine Cortical Bone Using the DCB Test. Int. J. Solids. Struct. 2017, 128, 210–220. DOI: 10.1016/J.IJSOLSTR.2017.08.028.
  • Gorman, J. M.; Thouless, M. D. The Use of Digital-Image Correlation to Investigate the Cohesive Zone in a Double-Cantilever Beam, with Comparisons to Numerical and Analytical Models. J. Mech. Phys. Solids. 2019, 123, 315–331. DOI: 10.1016/J.JMPS.2018.08.013.
  • Ciampaglia, A.; Fiumarella, D.; Boursier Niutta, C.; Ciardiello, R.; Belingardi, G. Impact Response of an Origami-Shaped Composite Crash Box: Experimental Analysis and Numerical Optimization. Compos. Struct. 2021, 256, 113093. DOI: 10.1016/J.COMPSTRUCT.2020.113093.
  • LSTC. LS-DYNA ® KEYWORD User’s Manual Volume II Material Models; Livermore Software Technology Corporation (LSTC), 2019.
  • Hartlen, D. C.; Montesano, J.; Cronin, D. S. Cohesive Zone Modeling of Adhesively Bonded Interfaces: The Effect of Adherend Geometry, Element Selection, and Loading Condition. 16 th International LS-DYNA ® Users Conference, 2020.
  • Niutta, C. B.; Belingardi, G.; Di, P.; Turin, T.; Scattina, A. Experimental and Numerical Analysis of a Pristine and a Nano-Modified Thermoplastic Adhesive. Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Volume 2: Computer Technology and Bolted Joints. Prague, Czech Republic, vol. 2, Prague, Czech, 2018.
  • Leal, A. J. S.; Campilho, R. D. S. G.; Silva, F. J. G.; Silva, D. F. O.; Moreira, F. J. P. Comparison of Different Test Configurations for the Shear Fracture Toughness Evaluation of a Ductile Adhesive. Procedia Manuf. 2019, 38, 940–947. DOI: 10.1016/J.PROMFG.2020.01.177.
  • Raponi, E.; Fiumarella, D.; Boria, S.; Scattina, A.; Belingardi, G. Methodology for Parameter Identification on a Thermoplastic Composite Crash Absorber by the Sequential Response Surface Method and Efficient Global Optimization. Compos. Struct. 2021, 278, 114646. DOI: 10.1016/J.COMPSTRUCT.2021.114646.
  • Stander, N.; Craig, K. J. On the Robustness of a Simple Domain Reduction Scheme for Simulation‐Based Optimization. Eng Comput (Swansea). 2002, 19(4), 431–450. DOI: 10.1108/02644400210430190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.