177
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

High Temperature Flexural Strength, Microstructure, and Phase Evolution of Quartz Fiber/Boron Phenolic Resin Ceramizable Composite Modified with W and B4C

, , , , , & show all
Pages 209-225 | Received 24 Aug 2023, Accepted 08 Sep 2023, Published online: 29 Sep 2023

References

  • Deng, Z. Y.; Yang, X. Y.; Yu, X. B.; Huang, Z. X.; Zhu, D.; Shi, M. X. High Temperature Flexural Strength, Microstructure, Phase Evolution and anti-Oxidation Mechanism of Al-Coated Carbon Fiber/Boron Phenolic Resin Ceramizable Composite Modified with TiB2 and B4C. Ceram. Int. 2023, 49, 25003–25015. DOI: 10.1016/j.ceramint.2023.05.029.
  • Feng, G. H.; Li, H. J.; Yao, X. Y.; Sun, J.; Jia, Y. J. An Optimized Strategy toward Multilayer Ablation Coating for SiC-Coated Carbon/Carbon Composites Based on Experiment and Simulation. J. Eur. Ceram. Soc. 2022, 42, 3802–3811. DOI: 10.1016/j.jeurceramsoc.2022.03.050.
  • Weng, Y. Q.; Yang, X.; Chen, F. X.; Zhang, X. X.; Shi, A. H.; Yan, J. Y.; Huang, Q. Z. Effect of CVI SiC Content on Ablation and Mechanism of C/C-SiC-ZrC-Cu Composites. Ceram. Int. 2022, 48, 7937–7950. DOI: 10.1016/j.ceramint.2021.11.341.
  • Zou, Z. Y.; Qin, Y.; Xue, C. Y.; Zhu, D.; Fu, H. D.; Deng, Z. Y.; Huang, Z. X. Thermal Properties, Oxidation Corrosion Behavior, and the in Situ Ceramization Mechanism of SiB6@BPR/HF Composites under High-Temperature Corrosion. Corros. Sci. 2021, 193, 109913. DOI: 10.1016/j.corsci.2021.109913.
  • Zhou, Y. J.; Zhang, Z. X.; Fu, X. W.; A, R. Integrated Computing Method for Ablative Thermal Protection System of Reentry Vehicles. Acta. Aeronaut. Astronaut. Sin. 2021, 42, 209–218. DOI: 10.7527/S1000-6893.2020.24520.
  • Ren, J.; Qin, Y.; Peng, Z.; Li, Z. Influence of Composite Structure Design on the Ablation Performance of Ethylene Propylene Diene Monomer Composites. e-Polymers 2021, 21, 151–159. DOI: 10.1515/epoly-2021-0015.
  • Chen, Y. X.; Chen, P.; Hong, C. Q.; Zhang, B. X.; Hui, D. Improved Ablation Resistance of Carbon-Phenolic Composites by Introducing Zirconium Diboride Particles. Compos. Pt. B-Eng. 2013, 47, 320–325. DOI: 10.1016/j.compositesb.2012.11.007.
  • Cheng, S.; Meng, P.; Huang, Z. X.; Wang, Y. B. Preparation and High-Temperature Resistance of Phenolic Resin/Silicone Rubber Ceramifiable Composites. J. Macromol. Sci., Part B: Phys. 2022, 61, 1473–1488. DOI: 10.1080/00222348.2023.2197773.
  • Zhao, H.; Xie, D.; Zhang, S.; Du, F. Study on Improving the High-Temperature Oxidation Resistance of Pyrolytic Carbons of Phenolic Resin Binder by in-Situ Formation of Carbon Nanotubes. React. Funct. Polym. 2020, 157, 104772. DOI: 10.1016/j.reactfunctpolym.2020.104772.
  • Chen, X.; Li, S.; Yan, L.; Yuan, Y. Curing and Pyrolysis of Boron-Modified Phenolic Resin. Acta Mater. Compos. Sin. 2011, 28, 89–95. DOI: 10.13801/j.cnki.fhclxb.2011.05.012.
  • Ding, J.; Huang, Z.; Qin, Y.; Shi, M.; Huang, C.; Mao, J. Improved Ablation Resistance of Carbon-Phenolic Composites by Introducing Zirconium Suicide Particles. Compos. Pt. B-Eng. 2015, 82, 100–107. DOI: 10.1016/j.compositesb.2015.08.023.
  • Tang, L.; Zhang, J.; Tang, Y.; Kong, J.; Liu, T.; Gu, J. Polymer Matrix Wave-Transparent Composites: A Review. J. Mater. Sci. Technol. 2021, 75, 225–251. DOI: 10.1016/j.jmst.2020.09.017.
  • Li, B.; Zheng, Y.; Zheng, Z.; Zhao, X. Characterization of Boron Modified Phenolic Resin and Its Curing Behavior. Adv. Mater. Res. 2011, 233–235, 137–141. DOI: 10.4028/www.scientific.net/AMR.233-235.137.
  • Yang, W.; Xu, B.; Qi, M.; Chen, D.; Ding, J.; Huang, Z.; Wang, Y. Improving Ablation Properties of Ceramifiable Vitreous Silica Fabric Reinforced Boron Phenolic Resin Composites via an Incorporation of MoSi2. Plast Rubber Compos. Plast. Rubber Compos. 2020, 49, 456–469. DOI: 10.1080/14658011.2020.1808758.
  • Li, Z.; Zou, Z.; Qin, Y.; Qi, M.; Ren, J.; Peng, Z. The Effect of Fibre Content on Properties of Ceramifiable Composites. Plast. Rubber Compos. 2020, 49, 230–236. DOI: 10.1080/14658011.2020.1731258.
  • Xie, Y. W.; Li, Z.; Xia, Y. Study on Ablation and Thermal Insulation Performance of Ceramizable Phenolic Matrix Composites. J. Capital Normal Univ.: Nat. Sci. Ed. 2019, 40, 52–56. DOI: 10.19789/j.1004-9398.2019.05.010.
  • Yang, T.; Dong, C.; Rong, Y.; Deng, Z.; Li, P.; Han, P.; Shi, M.; Huang, Z. Oxidation Behavior of Carbon Fibers in Ceramizable Phenolic Resin Matrix Composites at Elevated Temperatures. Polymers (Basel) 2022, 14, 2785. DOI: 10.3390/polym14142785.
  • Dong, C.; Deng, Z. Y.; Ren, Y. L. Preparation and High Temperature Resistance of Modified Boron Phenolic Resin with Almandine Micropowder. Acta Mater. Compos. Sin., 2022, 39, 2698–2706. DOI: 10.13801/j.cnki.fhclxb.20210628.001.
  • Han, P. K.; Deng, Z. Y.; Li, P. F. Influence of Glass Frit on High Temperature Properties and Dielectric Properties of Si3N4 Modified Boron Phenolic Resin Composites. Acta Mater. Compos. Sin. 2023, 40, 3037–3046. DOI: 10.13801/j.cnki.fhclxb.20220809.004.
  • Katoh, Y.; Snead, L. L.; Garrison, L. M.; Hu, X.; Koyanagi, T.; Parish, C. M.; Edmondson, P. D.; Fukuda, M.; Hwang, T.; Tanaka, T.; Hasegawa, A. Response of Unalloyed Tungsten to Mixed Spectrum Neutrons. J. Nucl. Mater. 2019, 520, 193–207. DOI: 10.1016/j.jnucmat.2019.03.045.
  • Alberico, T.; Raiyan, S.; Austin, W. A Review on Additive Manufacturing of Refractory Tungsten and Tungsten Alloys. Additive Manuf. 2022, 58, 103009. DOI: 10.1016/j.addma.2022.103009.
  • Wang, S.; Wang, Y.; Bian, C.; Zhong, Y.; Jing, X. The Thermal Stability and Pyrolysis Mechanism of Boron-Containing Phenolic Resins: The Effect of Phenyl Borates on the Char Formation. Appl. Surf. Sci. 2015, 331, 519–529. DOI: 10.1016/j.apsusc.2015.01.062.
  • Suriani, M. J.; Zainudin, H. A.; Ilyas, R. A.; Petrů, M.; Sapuan, S. M.; Ruzaidi, C. M.; Mustapha, R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological. Tensile, and Plammability Properties. Polymers (Basel) 2021, 13, 1532. DOI: 10.3390/polym13091532.
  • Wang, J.; Jiang, H.; Jiang, N. Study on the Pyrolysis of Phenol-Formaldehyde (PF) Resin and Modified PF Resin. Thermochim Acta 2009, 496, 136–142. DOI: 10.1016/j.tca.2009.07.012.
  • Trick, K. A.; Saliba, T. E. Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite. Carbon 1995, 33, 1509–1515. DOI: 10.1016/0008-6223(95)00092-r.
  • Deng, Z. Y.; Yue, J. L.; Huang, Z. X. Solvothermal Degradation and Reuse of Carbon Fiber Reinforced Boron Phenolic Resin Composites. Compos. B Eng. 2021, 221, 109011. DOI: 10.1016/j.compositesb.2021.109011.
  • Li, Y. Q.; Qiu, T. Oxidation Behavior of Boron Carbide Powder. Mater. Sci. Eng. A-Struct. 2007, 444, 184–191. DOI: 10.1016/j.msea.2006.08.068.
  • Hou, X. M.; Chou, K. C. Quantitative Investigation of Oxidation Behavior of Boron Carbide Powders in Air. J. Alloy Compd. 2013, 573, 182–186. DOI: 10.1016/j.jallcom.2013.04.012.
  • Tao, X.; Zhang, L.; Ma, X.; Xu, X.; Guo, A.; Hou, F.; Liu, J. Preparation of a Flexible High Emissivity Coating on Quartz Fiber Fabric for Thermal Protection. Ceram. Int. 2017, 43, 14292–14300. DOI: 10.1016/j.ceramint.2017.07.181.
  • Liu, D.; Zheng, L.; Luo, L.; Zan, X.; Song, J.-P.; Xu, Q.; Zhu, X.; Wu, Y. An Overview of Oxidation-Resistant Tungsten Alloys for Nuclear Fusion. J. Alloy Compd. 2018, 765, 299–312. DOI: 10.1016/j.jallcom.2018.06.202.
  • Lavrenko, A. V.; Pomytkin, P. A.; Kislyj, S. P.; Grabchuk, L. B. Kinetics of High-Temperature Oxidation of Boron Carbide in Oxygen. Oxid. Met. 1976, 10, 85–95. DOI: 10.1007/BF00614238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.