194
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Compositional Influence of Synthesized Magnetic Nanoparticles on Epoxy Composites: Dielectric, Magnetic, and Optical Characteristics

, , , , &
Pages 279-313 | Received 06 Aug 2023, Accepted 21 Sep 2023, Published online: 11 Oct 2023

References

  • Huo, J.; Wang, L.; Yu, H. Polymeric Nanocomposites for Electromagnetic Wave Absorption. J. Mater. Sci. 2009, 44, 3917–3927. DOI: 10.1007/s10853-009-3561-1.
  • Yu, G.; Cheng, Y.; Duan, Z. Research Progress of Polymers/Inorganic Nanocomposite Electrical Insulating Materials. Molecules 2022, 27, 7867. DOI: 10.3390/molecules27227867.
  • Sengwa, R. J.; Kumar, N.; Saraswat, M. Morphological, Structural, Optical, Broadband Frequency Range Dielectric and Electrical Properties of PVDF/PMMA/BaTiO3 Nanocomposites for Futuristic Microelectronic and Optoelectronic Technologies. Mater. Today Commun. 2023, 35, 105625. DOI: 10.1016/j.mtcomm.2023.105625.
  • Su, X.; Liu, Y.; Liao, Z.; Bi, Y.; Chen, Y.; Ma, Y.; Chung, K. L.; Wan, F.; Ma, M. A Review of 1D Magnetic Nanomaterials in Microwave Absorption. J. Mater. Sci. 2023, 58, 636–663. DOI: 10.1007/s10853-022-08054-2.
  • Rehman, A. U.; Atif, M.; Ur Rehman, U.; Wahab, H.; Ling, F. C.-C.; Khalid, W.; Ul-Hamid, A.; Ali, Z.; Nadeem, M. Tuning the Magnetic and Dielectric Properties of Fe3O4 Nanoparticles for EMI Shielding Applications by Doping a Small Amount of Ni2+/Zn2+. Mater. Today Commun. 2023, 34, 105454. DOI: 10.1016/j.mtcomm.2023.105454.
  • Manori, S.; Singh, P.; Yadav, P.; Kumar, A.; Chand Ra, R.; Raina, K. K.; Shukla, R. K. Magnetically Tunable Rheological Properties of PVDF Doped with Superparamagnetic Fe3O4 Nanoparticles Synthesized by Rapid Microwave Method. J. Phys. Chem. Solids 2023, 174, 111137. DOI: 10.1016/j.jpcs.2022.111137.
  • Yang, C.; Li, H.; Xiong, D.; Cao, Z. Hollow Polyaniline/Fe3O4 Microsphere Composites: Preparation, Characterization, and Applications in Microwave Absorption. React. Funct. Polym. 2009, 69, 137–144. DOI: 10.1016/j.reactfunctpolym.2008.12.008.
  • Wen, C.-Y.; Xie, H.-Y.; Zhang, Z.-L.; Wu, L.-L.; Hu, J.; Tang, M.; Wu, M.; Pang, D.-W. Fluorescent/Magnetic Micro/Nano-Spheres Based on Quantum Dots and/or Magnetic Nanoparticles: Preparation, Properties, and Their Applications in Cancer Studies. Nanoscale 2016, 8, 12406–12429. DOI: 10.1039/C5NR08534A.
  • Cardoso, V. F.; Francesko, A.; Ribeiro, C.; Bañobre‐López, M.; Martins, P.; Lanceros‐Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700845. DOI: 10.1002/adhm.201700845.
  • Muñoz-Bonilla, A.; Sánchez-Marcos, J.; Herrasti, P. Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites. Conducting Polymer Hybrids. Springer Series on Polymer and Composite Materials; Springer: Cham, 2017, Chapter 2, pp 45–80. DOI: 10.1007/978-3-319-46458-9_2.
  • Saini, P.; Choudhary, V.; Vijayan, N.; Kotnala, R. K. Improved Electromagnetic Interference Shielding Response of Poly (Aniline)-Coated Fabrics Containing Dielectric and Magnetic Nanoparticles. J. Phys. Chem. C 2012, 116, 13403–13412. DOI: 10.1021/jp302131w.
  • Bica, I. Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications. Nanomaterials 2022, 12, 2240. DOI: 10.3390/nano12132240.
  • Xiao, J.; Otaigbe, J. Polymer-Bonded Magnets. J. Alloy. Compd. 2000, 309, 100–106. DOI: 10.1016/S0925-8388(00)01060-4.
  • Hong, S. Y.; Kim, Y. C.; Wang, M.; Nam, J.-D.; Suhr, J. Anisotropic Electromagnetic Interference Shielding Properties of Polymer-Based Composites with Magnetically-Responsive Aligned Fe3O4 Decorated Reduced Graphene Oxide. Eur. Polym. J. 2020, 127, 109595. DOI: 10.1016/j.eurpolymj.2020.109595.
  • Dai, Q.; Berman, D.; Virwani, K.; Frommer, J.; Jubert, P.-O.; Lam, M.; Topuria, T.; Imaino, W.; Nelson, A. Self-Assembled Ferrimagnet–Polymer Composites for Magnetic Recording Media. Nano Lett. 2010, 10, 3216–3221. DOI: 10.1021/nl1022749.
  • Yue, C.; Li, M.; Liu, Y.; Fang, Y.; Song, Y.; Xu, M.; Li, J. Three-Dimensional Printing of Cellulose Nanofibers Reinforced PHB/PCL/Fe3O4 Magneto-Responsive Shape Memory Polymer Composites with Excellent Mechanical Properties. Addit. Manuf. 2021, 46, 102146. DOI: 10.1016/j.addma.2021.102146.
  • Mir, S. H.; Nagahara, L. A.; Thundat, T.; Mokarian-Tabari, P.; Furukawa, H.; Khosla, A. Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. J. Electrochem. Soc. 2018, 165, B3137–B3156. DOI: 10.1149/2.0191808jes.
  • Sondarva, S. J.; Shah, D. V. The Electrical Modulus, Conductivity and Dielectric Properties of Mn3TeO6 Multiferroic Compound. J. Alloys Compd. 2021, 859, 157773. DOI: 10.1016/j.jallcom.2020.157773.
  • Trompeta, A.-F. A.; Koumoulos, E. P.; Stavropoulos, S. G.; Velmachos, T. G.; Psarras, G. C.; Charitidis, C. A. Assessing the Critical Multifunctionality Threshold for Optimal Electrical, Thermal, and Nanomechanical Properties of Carbon Nanotubes/Epoxy Nanocomposites for Aerospace Applications. Aerospace 2019, 6, 7. DOI: 10.3390/aerospace6010007.
  • Lee, D.; Lee, S.; Byun, S.; Paik, K.-W.; Song, S. H. Novel Dielectric BN/Epoxy Nanocomposites with Enhanced Heat Dissipation Performance for Electronic Packaging. Compos. Part A Appl. Sci. Manuf. 2018, 107, 217–223. DOI: 10.1016/j.compositesa.2018.01.009.
  • Sakib, M. N.; Iqba, A. K. M. A. Epoxy Based Nanocomposite Material for Automotive Application–A Short Review. Int. J. Automot. Mech. Eng. 2021, 18, 9127–9140. DOI: 10.15282/ijame.18.3.2021.24.0701.
  • Ślosarczyk, A.; Klapiszewska, I.; Skowrońska, D.; Janczarek, M.; Jesionowski, T.; Klapiszewski, Ł. A Comprehensive Review of Building Materials Modified with Metal and Metal Oxide Nanoparticles against Microbial Multiplication and Growth. Chem. Eng. J. 2023, 466, 143276. DOI: 10.1016/j.cej.2023.143276.
  • Enayati-Gerdroodbar, A.; Eliseeva, S. N.; Salami-Kalajahi, M. A Review on the Effect of Nanoparticles/Matrix Interactions on the Battery Performance of Composite Polymer Electrolytes. J. Energy Storage 2023, 68, 107836. DOI: 10.1016/j.est.2023.107836.
  • Sharma, R. K.; Bandichhor, R.; Mishra, V.; Sharma, S.; Yadav, S.; Mehta, S.; Arora, B.; Rana, P.; Dutta, S.; Solanki, K. Advanced Metal Oxide-Based Nanocatalysts for the Oxidative Synthesis of Fine Chemicals. Mater. Adv. 2023, 4, 1795–1830. DOI: 10.1039/D2MA00977C.
  • Magdalena, A. G.; Silva, I. M. B.; Marques, R. F. C.; Pipi, A. R. F.; Lisboa-Filho, P. N.; Jafelicci, M. Jr. EDTA-Functionalized Fe3O4 Nanoparticles. J. Phys. Chem. Solids 2018, 113, 5–10. DOI: 10.1016/j.jpcs.2017.10.002.
  • Sivakumar, D.; Naidu, K.; Nazeer, K. P.; Rafi, M. M.; Sathyaseelan, B.; Killivalavan, G.; Begam, A. A. Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles. J. Korean Ceram. Soc. 2018, 55, 230–238. DOI: 10.4191/kcers.2018.55.3.02.
  • Sanida, A.; Stavropoulos, S. G.; Speliotis, T.; Psarras, G. C. Probing the Magnetoelectric Response and Energy Efficiency in Fe3O4/Epoxy Nanocomposites. Polym. Test. 2020, 88, 106560. DOI: 10.1016/j.polymertesting.2020.106560.
  • Madankumar, M.; Sivakumar, D.; Premkumar, S.; Manivannan, M.; Rafi, M. M.; Nazeer, K. P.; Begam, A. A. Synthesis and Dielectric Studies of Magnetite Nanoparticles. J. Emer. Tech. Inn. Res. 2018, 5, 886–897.
  • Kershi, R. M.; Ali, F. M.; Sayed, M. A. Influence of Rare Earth Ion Substitutions on the Structural, Optical, Transport, Dielectric, and Magnetic Properties of Superparamagnetic Iron Oxide Nanoparticles. J. Adv. Ceram. 2018, 7, 218–228. DOI: 10.1007/s40145-018-0273-5.
  • Chemingui, M.; Singh, U. B.; Yadav, N.; Dabrowski, R. S.; Dhar, R. Effect of Iron Oxide (γ-Fe2O3) Nanoparticles on the Morphological, Electro-Optical and Dielectric Properties of a Nematic Liquid Crystalline Material. J. Mol. Liq. 2020, 319, 114299. DOI: 10.1016/j.molliq.2020.114299.
  • Halder, J.; De, P.; Mandal, D.; Chandra, A. Bricks of Co, Ni Doped Fe3O4 as High Performing Pseudocapacitor Electrode. J. Energy Storage 2023, 58, 106391. DOI: 10.1016/j.est.2022.106391.
  • Khanna, A. S. High Temperature Oxidation. In Handbook of Environmental Degradation of Materials; Elsevier: Norwich, 2005; Vol. 1, p 117. DOI: 10.1016/B978-081551500-5.50008-2.
  • Gong, M.; Dai, H. A Mini Review of NiFe-Based Materials as Highly Active Oxygen Evolution Reaction Electrocatalysts. Nano Res. 2015, 8, 23–39. DOI: 10.1007/s12274-014-0591-z.
  • Jonak, S.; Borah, J. P. Correlation between Cation Distribution and Heating Efficiency of Annealed Fe3O4 Nanoparticles. Mater. Today Commun. 2021, 26, 101789. DOI: 10.1016/j.mtcomm.2020.101789.
  • Larumbe, S.; Gomez-Polo, C.; Pérez-Landazábal, J. I.; García-Prieto, A.; Alonso, J.; Fdez-Gubieda, M. L.; Cordero, D.; Gómez, J. Ni Doped Fe3O4 Magnetic Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 2652–2660. DOI: 10.1166/jnn.2012.5769.
  • Vennila, P.; Yoo, D. J.; Kim, A. R.; Kumar, G. G. Ni-Co/Fe3O4 Flower-like Nanocomposite for the Highly Sensitive and Selective Enzyme Free Glucose Sensor Applications. J. Alloys Compd. 2017, 703, 633–642. DOI: 10.1016/jallcom.2017.01.044.
  • Nsabimana, A.; Kitte, S. A.; Wu, F.; Qi, L.; Liu, Z.; Zafar, M. N.; Luque, R.; Xu, G. Multifunctional Magnetic Fe3O4/Nitrogen-Doped Porous Carbon Nanocomposites for Removal of Dyes and Sensing Applications. Appl. Surf. Sci. 2019, 467–468, 89–97. DOI: 10.1016/j.apsusc.2018.10.119.
  • Ag, Z. SUPRA55. https://wiki.smfi.unipr.ti/dokuwiki/lib/exe.fetch.php?media=lmn:brochure.pdf (accessed Aug 15, 2023).
  • Corporation, R. Rigaku/xrd/smartlab. https:www.rigaku.com/products/xrd/smartlab (accessed Aug 15, 2023).
  • Corporation, B. FTIR-ALPHA. https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/alpha-ii-compact-ft-ir-spectrometer.html (accessed Aug 15, 2023).
  • Micro Sense Inc. VSM. http://www.microsense.net/products-vsm-ez9.htm (accessed Aug 15, 2023).
  • Scientific, T. E. 260 B. UV-Visible, and S. MANUAL. http://www.thermofishersci.in/lit/Thermo Scientific Evolution 260.pdf (accessed Aug 15, 2023).
  • SPEAG-DAK-TL. https://speag.swiss.assets/sowloads.products.dak.free_free_downloads/AN_DAK_TL_Best practieces.pdf (accessed Aug 15, 2023).
  • Anritsu Co. ShockLine MS46322A series economy vector network analyzer operation manual. https://dl.cdn-anritsu.com/en-us/test-measurement/files/Manuals/Operation-Manual/10410-00335AB.pdf (accessed Sep 20, 2023).
  • SPEAG. DAK Dielectric Assessment Kit Professional Handbook V 2.4, No. 2.4; Schmid & Partner Engineering AG: Switzerland, 2017.
  • Kumar, M.; Sharma, A.; Maurya, I. K.; Thakur, A.; Kumar, S. Synthesis of Ultra Small Iron Oxide and Doped Iron Oxide Nanostructures and Their Antimicrobial Activities. J. Taibah Univ. Sci. 2019, 13, 280–285. DOI: 10.1080/16583655.2019.1565437.
  • Bello, S. A.; Agunsoye, J. O.; Adebisi, J. A.; Hassan, S. B. Effect of Aluminium Particles on Mechanical and Morphological Properties of Epoxy Nanocomposites. Acta Per Tech. 2017, 48, 25–38. DOI: 10.2298/APT1748025B.
  • Khan, R.; Azhar, M. R.; Anis, A.; Alam, M. A.; Boumaza, M.; Al-Zahrani, S. M. Facile Synthesis of Epoxy Nanocomposite Coatings Using Inorganic Nanoparticles for Enhanced Thermo-Mechanical Properties: A Comparative Study. J. Coat. Technol. Res. 2016, 13, 159–169. DOI: 10.1007/s11998-015-9736-6.
  • Alam, M. A. Influence of SiO2 Content and Exposure Periods on the Anticorrosion Behavior of Epoxy Nanocomposite Coatings. Coatings 2020, 10, 118. DOI: 10.3390/coatings10020118.
  • Kumar, A.; Kumar, K.; Ghosh, P. K.; Yadav, K. L. MWCNT/TiO2 Hybrid Nano Filler toward High-Performance Epoxy Composite. Ultrason. Sonochem. 2018, 41, 37–46. DOI: 10.1016/j.ultsonch.2017.09.005.
  • Venkatesan, K.; Rajan Babu, D.; Kavya Bai, M. P.; Supriya, R.; Vidya, R.; Madeswaran, S.; Anandan, P.; Arivanandhan, M.; Hayakawa, Y. Structural and Magnetic Properties of Cobalt-Doped Iron Oxide Nanoparticles Prepared by Solution Combustion Method for Biomedical Applications. Int. J. Nanomedicine 2015, 10 Suppl 1, 189–198. DOI: 10.2147/IJN.S82210.
  • Sajid, M.; Shuja, S.; Rong, H.; Zhang, J. Size-Controlled Synthesis of Fe3O4 and Fe3O4@ SiO2 Nanoparticles and Their Superparamagnetic Properties Tailoring. Prog. Nat. Sci. Mater. Int. 2023, 33, 116–119. DOI: 10.1016/j.pnsc.2022.08.003.
  • Abu-Huwaij, R.; Al-Assaf, S. F.; Mousli, F.; Kutkut, M. S.; Al-Bashtawi, A. Perceptive Review on Properties of Iron Oxide Nanoparticles and Their Antimicrobial and Anticancer Activity. Sys. Rev. Pharm. 2020, 11, 418–431. DOI: 10.31838/srp.2020.8.61.
  • Kozako, M.; Ohki, Y.; Kohtoh, M.; Okabe, S.; Tanaka, T. Preparation and Various Characteristics of Epoxy/Alumina Nanocomposites. Trans. Inst. Electric. Eng. Jpn. A 2006, 126, 1121–1127. DOI: 10.1541/ieejfms.126.1121.
  • Naidu, T. M.; Narayana, P. V. L. Synthesis and Characterization of Fe-TiO2 and NiFe2O4 Nanoparticles and Its Thermal Properties. J. Nanosci. Technol. 2019, 5, 769–772. DOI: 10.30799/jnst.247.19050407.
  • Joseph, A. M.; Thangaraj, B.; Gomathi, R. S.; Adaikalam, A. A. R. Synthesis and Characterization of Cobalt Ferrite Magnetic Nanoparticles Coated with Polyethylene Glycol. Adv. Nano Biol. M&D 2017, 1, 71–77.
  • Abutalib, M. M.; Rajeh, A. Influence of Fe3O4 Nanoparticles on the Optical, Magnetic and Electrical Properties of PMMA/PEO Composites: Combined FT-IR/DFT for Electrochemical Applications. J. Organomet. Chem. 2020, 920, 121348. DOI: 10.1016/j.jorganchem.2020.121348.
  • Hosseinkhani, P.; Zand, A. M.; Imani, S.; Rezayi, M.; Rezaei, Z. S. Determining the Antibacterial Effect of ZnO Nanoparticle against the Pathogenic Bacterium, Shigella dysenteriae (Type 1). Int. J. Nano Dim. 2011, 4, 279. DOI: 10.7508/IJND.2010.04.006.
  • Kumar, P.; Narayan Maiti, U.; Sikdar, A.; Kumar Das, T.; Kumar, A.; Sudarsan, V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019, 59, 687–738. DOI: 10.1080/15583724.2019.1625058.
  • Yunas, J.; Mulyanti, B.; Hamidah, I.; Mohd Said, M.; Pawinanto, R. E.; Wan Ali, W. A. F.; Subandi, A.; Hamzah, A. A.; Latif, R.; Yeop Majlis, B. Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review. Polymers 2020, 12, 1184. DOI: 10.3390/polym12051184.
  • Cheng, J.; Zhang, H.; Xiong, Y.; Gao, L.; Wen, B.; Raza, H.; Wang, H.; Zheng, G.; Zhang, D.; Zhang, H. Construction of Multiple Interfaces and Dielectric/Magnetic Heterostructures in Electromagnetic Wave Absorbers with Enhanced Absorption Performance: A Review. J. Mater. 2021, 7, 1233–1263. DOI: 10.1016/j.jmat.2021.02.017.
  • Durmus, H.; Safak, H.; Akbas, H. Z.; Ahmetli, G. Optical Properties of Modified Epoxy Resin with Various Oxime Derivatives in the UV‐VIS Spectral Region. J. Appl. Polym. Sci. 2011, 120, 1490–1495. DOI: 10.1002/app.33287.
  • El-Naggar, A. M.; Heiba, Z. K.; Mohamed, M. B.; Kamal, A. M.; Lakshminarayana, G.; Abd-Elkader, O. H. Effect of MnS/ZnS Nanocomposite on the Structural, Linear and Nonlinear Optical Properties of PVA/CMC Blended Polymer. Opt. Mater. 2022, 128, 112379. DOI: 10.1016/j.optmat.2022.112379.
  • Wang, H.; Zhong, J.; Feng, D.; Meng, J.; Xie, N. Nanoparticles-Modified Polymer-Based Solar-Reflective Coating as a Cooling Overlay for Asphalt Pavement. Int. J. Smart Nano Mater. 2013, 4, 102–111. DOI: 10.1080/19475411.2012.714808.
  • Jilani, W.; Gouadria, S.; Bouzidi, A.; Al-Harbi, F. F.; Omri, K.; Guermazi, H.; Yahia, I. S. DGEBA Epoxy Polymer Composite Panels (MB: DGEBA-EPCPs): Structural, Optical, and Dielectric Properties-Leanings and Appliances in Optical Electronics. Opt. Quant. Electron. 2023, 55, 1–17. DOI: 10.1007/s11082-022-04496-9.
  • Jeong, H. K.; Jin, M. H.; So, K. P.; Lim, S. C.; Lee, Y. H. Tailoring the Characteristics of Graphite Oxides by Different Oxidation Times. J. Phys. D Appl. Phys. 2009, 42, 065418. DOI: 10.1088/0022-3727/42/6/065418.
  • Schlegel, A.; Alvarado, S. F.; Wachter, P. Optical Properties of Magnetite (Fe3O4). J. Phys. C Solid State Phys. 1979, 12, 1157–1164. DOI: 10.1088/0022-3719/12/6/027.
  • Sabur, M. A.; Rahman, G. M.; Kamruzzaman, M.; Gafur, M. A.; Al Mamun, M. Fabrication and Characterization of Nanocomposites Based on NiFe2O4 Nanoparticles and Epoxy Polymer. J. Mater. Environ. Sci. 2022, 13,852–868. DOI: 10.38032/jea.2021.02.005.
  • Sengwa, R. J.; Dhatarwal, P. Polymer Nanocomposites Comprising PMMA Matrix and ZnO, SnO2, and TiO2 Nanofillers: A Comparative Study of Structural, Optical, and Dielectric Properties for Multifunctional Technological Applications. Opt. Mater. 2021, 113, 110837. DOI: 10.1016/j.optmat.2021.110837.
  • Keysight Technologies. Agilent LCR Manual. https://www.keysight.com/in/en/assets/9018-01431/user-manuals/9018-01431.pdf (accessed Aug 15, 2023).
  • Mauritz, K. A. Dielectric Relaxation Studies of Ion Motions in Electrolyte-Containing Perfluorosulfonate Ionomers, 4. Long-Range Ion Transport. Macromolecules 1989, 22, 4483–4488. DOI: 10.1021/ma00202a018.
  • Thakor, S. G.; Rana, V. A.; Vankar, H. P. Dielectric Characterization of TiO2, Al2O3-Nanoparticle Loaded Epoxy Resin. Proceedings of the AIP Conference; AIP Publishing, 2018; Vol. 1953, p 50049. DOI: 10.1063/1.5032704.
  • Wu, K.; Lei, C.; Yang, W.; Chai, S.; Chen, F.; Fu, Q. Surface Modification of Boron Nitride by Reduced Graphene Oxide for Preparation of Dielectric Material with Enhanced Dielectric Constant and Well-Suppressed Dielectric Loss. Compos. Sci. Technol. 2016, 134, 191–200. DOI: 10.1016/j.compscitech.2016.08.015.
  • Singha, S.; Thomas, M. J. Dielectric Properties of Epoxy Nanocomposites. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 12–23. DOI: 10.1109/T-DEI.2008.4446732.
  • Kochetov, R.; Andritsch, T.; Morshuis, P. H. F.; Smit, J. J. Anomalous Behaviour of the Dielectric Spectroscopy Response of Nanocomposites. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 107–117. DOI: 10.1109/TDEI.2012.6148508.
  • Li, Y. J.; Xu, M.; Feng, J. Q.; Dang, Z. M. Dielectric Behavior of a Metal-Polymer Composite with Low Percolation Threshold. Appl. Phys. Lett. 2006, 89, 072902. DOI: 10.1063/1.2337157.
  • Bychanok, D.; Kuzhir, P.; Maksimenko, S.; Bellucci, S.; Brosseau, C. Characterizing Epoxy Composites Filled with Carbonaceous Nanoparticles from dc to Microwave. J. Appl. Phys. 2013, 113, 124103. DOI: 10.1063/1.4798296.
  • Thakor, S. G.; Rana, V. A.; Vankar, H. P.; Pandit, T. R. Microwave Dielectric Relaxation Spectroscopy of Nano Filler Loaded Epoxy Composite. Indian J. Pure Appl. Phys. 2021, 59, 643–650. http://op.niscpr.res.in/index.php/IJPAP/article/view/35707.
  • Gallone, G.; Capaccioli, S.; Levita, G.; Rolla, P. A.; Corezzi, S. Dielectric Analysis of the Linear Polymerization of an Epoxy Resin. Polym. Int. 2001, 50, 545–551. DOI: 10.1002/pi.663.
  • Kranauskaite, I.; Macutkevic, J.; Kuzhir, P.; Volynets, N.; Paddubskaya, A.; Bychanok, D.; Maksimenko, S.; Banys, J.; Juskenas, R.; Bistarelli, S.; et al. Dielectric Properties of Graphite‐Based Epoxy Composites. Phys. Status Solidi A 2014, 211, 1623–1633. DOI: 10.1002/pssa.201431101.
  • Abosheiasha, H. F.; Mansour, D.-E. A.; Darwish, M. A.; Assar, S. T. Synthesis and Investigation of Structural, Thermal, Magnetic, and Dielectric Properties of Multifunctional Epoxy/Li0.5Al0.35Fe2.15O4/Al2O3 Nanocomposites. J. Mater. Res. Technol. 2022, 16, 1526–1546. DOI: 10.1016/j.jmrt.2021.11.149.
  • Ploetz, E. A.; Bentenitis, N.; Smith, P. E. Developing Force Fields from the Microscopic Structure of Solutions. Fluid Phase Equilib. 2010, 290, 43–47. DOI: 10.1016/j.fluid.2009.11.023.
  • Adnan, M. M.; Nylund, I.-E.; Jaworski, A.; Hvidsten, S.; Ese, M.-H. G.; Glaum, J.; Einarsrud, M.-A. The Structure, Morphology, and Complex Permittivity of Epoxy Nanodielectrics with In Situ Synthesized Surface-Functionalized SiO2. Polymers 2021, 13, 1469. DOI: 10.3390/polym13091469.
  • Vakil, P. N.; Muhammed, F.; Hardy, D.; Dickens, T. J.; Ramakrishnan, S.; Strouse, G. F. Dielectric Properties for Nanocomposites Comparing Commercial and Synthetic Ni-and Fe3O4-Loaded Polystyrene. ACS Omega 2018, 3, 12813–12823. DOI: 10.1021/acsomega.8b01477.
  • Nixdorf, K.; Busse, G. The Dielectric Properties of Glass-Fibre-Reinforced Epoxy Resin during Polymerisation. Compos. Sci. Technol. 2001, 61, 889–894. DOI: 10.1016/S0266-3538(00)00174-3.
  • Sengwa, R. J.; Choudhary, S. Investigation of Correlation between Dielectric Parameters and Nanostructures in Aqueous Solution Grown Poly (Vinyl Alcohol)-Montmorillonite Clay Nanocomposites by Dielectric Relaxation Spectroscopy. Express Polym. Lett. 2010, 4, 559–569. DOI: 10.3144/expresspolymlett.2010.70.
  • Wu, J.; Kong, L. High Microwave Permittivity of Multiwalled Carbon Nanotube Composites. Appl. Phys. Lett. 2004, 84, 4956–4958. DOI: 10.1063/1.1762693.
  • Greenhoe, B. M.; Hassan, M. K.; Wiggins, J. S.; Mauritz, K. A. Universal Power Law Behavior of the AC Conductivity versus Frequency of Agglomerate Morphologies in Conductive Carbon Nanotube‐Reinforced Epoxy Networks. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1918–1923. DOI: 10.1002/polb.24121.
  • Thakor, S. G.; Rana, V. A.; Vankar, H. P.; Pandit, T. R. Dielectric Spectroscopy and Structural Characterization of Nano-Filler-Loaded Epoxy Resin. J. Adv. Dielect. 2021, 11, 2150011. DOI: 10.1142/S2010135X21500119.
  • Zong, L.; Zhou, S.; Sun, R.; Kempel, L. C.; Hawley, M. C. Dielectric Analysis of a Crosslinking Epoxy Resin at a High Microwave Frequency. J. Polym. Sci. B Polym. Phys. 2004, 42, 2871–2877. DOI: 10.1002/polb.20154.
  • Livi, A.; Levita, G.; Rolla, P. A. Dielectric Behavior at Microwave Frequencies of an Epoxy Resin during Crosslinking. J. Appl. Polym. Sci. 1993, 50, 1583–1590. DOI: 10.1002/app.1993.070500912.
  • Pochan, J. M.; Gruber, R. J.; Pochan, D. F. Dielectric Relaxation Phenomena in a Series of Polyhydroxyether Copolymers of Bisphenol‐A—Endcapped Polyethylene Glycol with Epichlorohydrin. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 143–149. DOI: 10.1002/pol.1981.180190112.
  • Butta, E.; Livi, A.; Levita, G.; Rolla, P. A. Dielectric Analysis of an Epoxy Resin during Cross‐Linking. J. Polym. Sci. B Polym. Phys. 1995, 33, 2253–2261. DOI: 10.1002/polb.1995.090331610.
  • Zong, L.; Kempel, L. C.; Hawley, M. C. Dielectric Studies of Three Epoxy Resin Systems during Microwave Cure. Polymer 2005, 46, 2638–2645. DOI: 10.1016/j.polymer.2005.01.083.
  • Zobg, L.; Hawley, M.C.; Sun, R.; Kempel, L.C.; Dielectric Relaxation of Curing DGEBA/MPDA System at 2.45 GHz, J. Thermoplast. Compos. Mater. 2009, 22, 249–257, DOI: 10.1177/0892705708093501.
  • Hasna, A. M. Composite Dielectric Heating and Drying: The Computation Process. Proceedings of the World Congress on Engineering, 2009; Vol. 1, p 3.
  • Harrison, W. L. Electric Power for Industrial Processes Using Dielectric Heating. Power Eng. J. 1988, 2, 105–113. DOI: 10.1049/pe:19880021.
  • Clark, D. E.; Sutton, W. H. Microwave Processing of Materials. Annu. Rev. Mater. Sci. 1996, 26, 299–331. DOI: 10.1146/annurev.ms.26.080196.001503.
  • Bogdal, D.; Prociak, A. Microwave-Enhanced Polymer Chemistry and Technology; John Wiley & Sons: Hoboken, NJ, 2008.
  • Veggi, P. C.; Martinez, J.; Meireles, M. A. Fundamentals of Microwave Extraction. In Microwave-Assisted Extraction for Bioactive Compounds; Springer: New York, NY, 2012; pp 15–52. DOI: 10.1007/978-1-4614-4830-3_2.
  • Magee, T. R. A.; McMinn, W. A. M.; Farrell, G.; Topley, L.; Al-Degs, Y. S.; Walker, G. M.; Khraisheh, M. Moisture and Temperature Dependence of the Dielectric Properties of Pharmaceutical Powders. J. Therm. Anal. Calorim. 2013, 111, 2157–2164. DOI: 10.1007/s10973-012-2739-y.
  • THostenson, E. T.; Chou, T.-W. Microwave Processing: Fundamentals and Applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1055–1071. DOI: 10.1016/S1359-835X(99)00020-2.
  • Gupta, M.; Leong, E. W. Microwaves and Metals; John Wiley & Sons: Hokoben, NJ, 2008; Vol. 1.
  • Lewis, D. A. Microwave Processing of Polymers-An Overview. MRS Proc. 1992, 269, 21. DOI: 10.1557/PROC-269-21.
  • Council, N. R. Microwave Processing of Materials; National Academies Press: Washington, DC, 1994; Vol. 473.
  • Fothergill, J. C.; Nelson, J. K.; Fu, M. Dielectric Properties of Epoxy Nanocomposites Containing TiO2, Al2O3 and ZnO Fillers. Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS; IEEE, 2004; pp 406–409. DOI: 10.1109/CEIDP.2004.1364273.
  • Thakor, S.; Rana, V. A.; Vankar, H. P. Dielectric Spectroscopy of SiO2, ZnO-Nanoparticle Loaded Epoxy Resin in the Frequency Range of 20 Hz to 2 MHz. AIP Conf. Proc. 2017, 1837, 40025. DOI: 10.1063/1.4982109.
  • Feichtenschlager, B.; Pabisch, S.; Svehla, J.; Peterlik, H.; Sajjad, M.; Koch, T.; Kickelbick, G. Epoxy Resin Nanocomposites: The Influence of Interface Modification on the Dispersion Structure—A Small-Angle-X-Ray-Scattering Study. Surfaces 2020, 3, 664–682. DOI: 10.3390/surfaces3040044.
  • Peng, W.; Huang, X.; Yu, J.; Jiang, P.; Liu, W. Electrical and Thermophysical Properties of Epoxy/Aluminum Nitride Nanocomposites: Effects of Nanoparticle Surface Modification. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1201–1209. DOI: 10.1016/j.compositesa.2010.05.002.
  • Taha, T. A.; Alzara, M. A. A. Synthesis, Thermal and Dielectric Performance of PVA-SrTiO3 Polymer Nanocomposites. J. Mol. Struct. 2021, 1238, 130401. DOI: 10.1016/j.molstruc.2021.130401.
  • Noor, H.; Faraz, S. M.; Hanif, M. W.; Ishaq, M.; Zafar, A.; Riaz, S.; Naseem, S. ZnS Nanoparticles-Tailored Electric, Magnetic and Mechanical Properties of Nanocomposites. Phys. B Condens. Matter. 2023, 650, 414572. DOI: 10.1016/j.physb.2022.414572.
  • Manjunatha, G.; Sharma, K. V. Investigation of Effect of Hygrothermal Ageing on Physical Properties of Graphene Oxide/Epoxy Nano-Composites. Mater. Today Proc. 2022, 64, 188–193. DOI: 10.1007/s10853-009-3561-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.