41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Comparative Study on the Influence of Nanocellulose and Silicon Dioxide Nanoparticles on the Properties of a Metal–Organic Framework of Dimethylammonium Aluminum Sulfate Hexahydrate

ORCID Icon
Pages 260-276 | Received 15 Jan 2024, Accepted 20 Jan 2024, Published online: 31 Jan 2024

References

  • Suresh Khurd, A.; Kandasubramanian, B. A Systematic Review of Cellulosic Material for Green Electronics Devices. Carbohydr. Polym. Technol. Appl. 2022, 4, 100234. DOI: 10.1016/j.carpta.2022.100234.
  • Sealy, C. Cellulose Ink Makes Printing 3D Wearable Electronics Easy. Mater. Today 2023, 64, 5. DOI: 10.1016/j.mattod.2023.03.013.
  • Lamanna, L.; Pace, G.; Ilic, I. K.; Cataldi, P.; Viola, F.; Friuli, M.; Galli, V.; Demitri, C.; Caironi, M. Edible Cellulose-Based Conductive Composites for Triboelectric Nanogenerators and Supercapacitors. Nano Energy 2023, 108, 108168. DOI: 10.1016/j.nanoen.2023.108168.
  • Chen, Q.; Ying, D.; Chen, Y.; Xie, H.; Zhang, H.; Chang, C. Highly Transparent, Hydrophobic, and Durable Anisotropic Cellulose Films as Electronic Screen Protectors. Carbohydr. Polym. 2023, 311, 120735. DOI: 10.1016/j.carbpol.2023.120735.
  • Prilepskii, A.; Nikolaev, V.; Klaving, A. Conductive Bacterial Cellulose: From Drug Delivery to Flexible Electronics. Carbohydr. Polym. 2023, 313, 120850. DOI: 10.1016/j.carbpol.2023.120850.
  • Weng, M.; Zhou, J.; Ye, Y.; Qiu, H.; Zhou, P.; Luo, Z.; Guo, Q. Self-Chargeable Supercapacitor Made with MXene-Bacterial Cellulose Nanofiber Composite for Wearable Devices. J. Colloid Interface Sci. 2023, 647, 277–286. DOI: 10.1016/j.jcis.2023.05.162.
  • Fu, C.; Lin, C.; Zhang, W.; Lin, Y.; Xiu, J.; Ni, Y.; Huang, L. Preparation of Micro-Fibrillated Cellulose Fibers by a Simple Two-Step Refining Process for Paper- Based Flexible Electronic Devices. Chem. Eng. J 2023, 468, 143516. DOI: 10.1016/j.cej.2023.143516.
  • Wang, D.; Hao, S.; Dkhil, B.; Tian, B.; Duan, C. Ferroelectric Materials for Neuroinspired Computing Applications. Fundam. Res 2023, (in press). DOI: 10.1016/j.fmre.2023.04.013.
  • Guo, J.; Yu, H.; Ren, Y.; Qi, H.; Yang, X.; Deng, Y.; Zhang, S.-T.; Chen, J. Multi-Symmetry High-Entropy Relaxor Ferroelectric with Giant Capacitive Energy Storage. Nano Energy 2023, 112, 108458. DOI: 10.1016/j.nanoen.2023.108458.
  • Thanh Tung, N.; Taxil, G.; Nguyen, H. H.; Ducharne, B.; Lallart, M.; Lefeuvre, E.; Kuwano, H.; Sebald, G. Ultimate Electromechanical Energy Conversion Performance and Energy Storage Capacity of Ferroelectric Materials Under High Excitation Levels. Appl. Energy 2022, 326, 119984. DOI: 10.1016/j.apenergy.2022.119984.
  • Chen, D.; Tan, X.; Shen, B.; Jiang, J. Size-Dependent Polarization Retention in Ferroelectric BiFeO3 Domain Wall Memories. Ceram. Int. 2023, 49, 22595–22601. DOI: 10.1016/j.ceramint.2023.04.097.
  • Du, J.; Xie, D.; Zhang, Q.; Zhong, H.; Meng, F.; Fu, X.; Sun, Q.; Ni, H.; Li, T.; Guo, E-j.; et al. A Robust Neuromorphic Vision Sensor with Optical Control of Ferroelectric Switching. Nano Energy 2021, 89, 106439. DOI: 10.1016/j.nanoen.2021.106439.
  • Huang, Y.; Shu, L.; Hu, F.; Liu, L.; Zhou, Z.; Cheng, Y.-Y.-S.; Zhang, S.; Li, W.; Li, Q.; Wang, H.; et al. Implementing (K,Na)NbO3-Based Lead-Free Ferroelectric Films to Piezoelectric Micromachined Ultrasonic Transducers. Nano Energy 2022, 103, 107761. DOI: 10.1016/j.nanoen.2022.107761.
  • Zhang, W.; Xiong, R.-G. Ferroelectric Metal - Organic Frameworks. Chem. Rev. 2012, 112, 1163–1195. DOI: 10.1021/cr200174w.
  • Hu, L.; Shi, T.; Chen, J.; Cui, Q.; Yu, H.; Wu, D.; Ma, H.; Wei, Q.; Ju, H. Dual-Quenching Electrochemiluminescence Resonance Energy Transfer System from CoPd Nanoparticles Enhanced Porous g-C3N4 to FeMOFs-sCuO for Neuron-Specific Enolase Immunosensing. Biosens. Bioelectron. 2023, 226, 115132. DOI: 10.1016/j.bios.2023.115132.
  • Wang, X.; Sun, X.; Ma, C.; Zhang, Y.; Kong, L.; Huang, Z.; Hu, Y.; Wan, H.; Wang, P. Multifunctional AuNPs@HRP@FeMOF Immune Scaffold with a Fully Automated Saliva Analyzer for Oral Cancer Screening. Biosens. Bioelectron. 2023, 222, 114910. DOI: 10.1016/j.bios.2022.114910.
  • Mai, B. D. Anomalous Phase Transition, Polarization Switching, and Relaxation in a Novel Composite Consisting of Dimethylammonium Aluminum Sulfate Hexahydrate and Oxidized Multiwalled Carbon Nanotubes. J Macromol. Sci. B Phys 2022, 61, 1411–1425. DOI: 10.1080/00222348.2023.2185021.
  • Nguen, K. T.; Milovidova, S. D.; Sidorkin, A. S.; Rogazinskaya, O. V. Dielectric Properties of Composites Based on Nanocrystalline Cellulose with Triglycine Sulfate. Phys. Solid State 2015, 57, 503–506. DOI: 10.1134/S1063783415030178.
  • Mai, B. D.; Nguyen, H. T.; Hoang, D.-Q. Influence of Cellulose Nanoparticles on Structure and Electrophysical Properties of Ferroelectrics. Mater. Trans. 2019, 60, 2499–2505. DOI: 10.2320/matertrans.MT-M2019189.
  • Nguyen, H. T. Stability over Time of Ferroelectric Phase Transition and Polarization Switching in a Nanocomposite Based on Potassium Dihydrogen Phosphate Filled with Cellulose. MRS Adv 2023, 8, 919–924. DOI: 10.1557/s43580-023-00570-w.
  • Pradhan, R.; Chandrika, V. S.; Thilagavathi, G.; Muruganandam, D.; Hariprasad, K.; Adlin Paul, J. Study on the Thermal Resistance Comparison on Al with SiO2 Composites for Electronics Chips. Mater. Today Proc. 2020, 33, 2850–2853. DOI: 10.1016/j.matpr.2020.02.710.
  • Cho, M.; Jeon, G. G.; Sang, M.; Kim, T. S.; Suh, J.; Shin, S. J.; Choi, M. J.; Kim, H. W.; Kim, K.; Lee, J. Y.; et al. Ultra-Thin Thermally Grown Silicon Dioxide Nanomembrane for Waterproof Perovskite Solar Cells. J. Power Sources 2023, 563, 232810. DOI: 10.1016/j.jpowsour.2023.232810.
  • Hao, M.-Y.; Hyunsang, H.; Jack, C. L. Silicon-Implanted SiO2 for Nonvolatile Memory Applications. Microelectron. Reliab 1994, 34, 1971. DOI: 10.1016/0026-2714(94)90423-5.
  • Mai Phuong, N.; Neishi, K.; Sutou, Y.; Koike, J. Effects of Adsorbed Moisture in SiO2 Substrates on the Formation of a Mn Oxide Layer by Chemical Vapor Deposition. J. Phys. Chem. C 2011, 115, 16731–16736. DOI: 10.1021/jp201299w.
  • Wang, L.; Zhang, Y.; Gao, P.; Shi, D.; Liu, H.; Gao, H. Changes in the Structural Properties and Rate of Hydrolysis of Cotton Fibers during Extended Enzymatic Hydrolysis. Biotechnol. Bioeng. 2006, 93, 443–456. DOI: 10.1002/bit.20730.
  • Lu, P.; Hsieh, Y.-L. Preparation and Properties of Cellulose Nanocrystals: Rods, Spheres, and Network. Carbohydr. Polym. 2010, 82, 329–336. DOI: 10.1016/j.carbpol.2010.04.073.
  • Fattahi Meyabadi, T.; Dadashian, F.; Mir Mohamad Sadeghi, G.; Ebrahimi Zanjani, A. H. Spherical Cellulose Nanoparticles Preparation from Waste Cotton Using a Green Method. Powder Technol. 2014, 261, 232–240. DOI: 10.1016/j.powtec.2014.04.039.
  • Völkel, G.; Böttcher, R.; Michel, D.; Czapla, Z.; Banys, J. Dimethylammonium Gallium Sulfate Hexahydrate and Dimethylammonium Aluminium Sulfate Hexahydrate - Members of a Crystal Family with Exceptional Commensurate/Incommensurate Phase Sequences. J. Phys. Condens. Matter. 2005, 17, 4511–4529. DOI: 10.1088/0953-8984/17/28/010.
  • Podsiadła, D.; Ryba-Romanowski, W.; Gołąb, S.; Czupiński, O.; Czapla, Z. Optical Spectroscopy of Chromium Doped Deuterated (CH3)2NH2Al(SO4)2⋅6H2O Crystals. J. Mol. Struct. 2000, 555, 335–340. DOI: 10.1016/S0022-2860(00)00618-9.
  • Dolinšek, J.; Klanjšek, M.; Arčon, D.; Kim, H. J.; Seliger, J.; Žagar, V.; Kirpichnikova, L. F. 1H and 27Al NMR Study of the Ferroelectric Transition in Dimethylammonium Aluminum Sulphate Hexahydrate (CH3)2NH2Al(SO4)2⋅6H2O. Phys. Rev. B 1999, 59, 3460–3467. DOI: 10.1103/PhysRevB.59.3460.
  • Hrabanski, R.; Janiec, M.; Jackowska, M.; Kapustianik, V. EPR Studies of the Order-Disorder Phase Transition in DMAAS Crystal. Ferroelectrics 2003, 291, 241–249. DOI: 10.1080/00150190390222736.
  • Matthew, T. Ferroelectrics and the Curie-Weiss Law. Eur. J. Phys. 2000, 21, 459. DOI: 10.1088/0143-0807/21/5/312.
  • Keith, J. L. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61, 494. DOI: 10.1021/ed061p494.
  • Banys, J.; Völkel, G.; Böttcher, R.; Michel, D.; Czapla, Z. Dielectric Properties of a DMAGaS/DMAAS Mixed Crystal. Phase Transit. 2005, 78, 337–349. DOI: 10.1080/01411590412331317095.
  • Galiyarova, N. M. Critical Slowing Down of Relaxing Domain Walls and Interfaces in Phase Transition Vicinities. Ferroelectrics 1995, 170, 111–121. DOI: 10.1080/00150199508014197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.