84
Views
1
CrossRef citations to date
0
Altmetric
Ancillary Tools in Breast Pathology

The role of molecular analysis in breast cancer

, &
Pages 77-88 | Received 20 Jul 2008, Accepted 07 Aug 2008, Published online: 06 Jul 2009

References

  • Reis-Filho J S, Simpson P T, Gale T, Lakhani S R. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 2005; 201: 713–725
  • Simpson P T, Reis-Filho J S, Gale T, Lakhani S R. Molecular evolution of breast cancer. J Pathol 2005; 205: 248–254
  • Nahta R, Esteva F J. Trastuzumab: triumphs and tribulations. Oncogene 2007; 26: 3637–3643
  • Perou C M, Sorlie T, Eisen M B, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752
  • Sorlie T, Perou C M, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874
  • Brenton J D, Carey L A, Ahmed A A, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol 2005; 23: 7350–7360
  • Reis-Filho J S, Westbury C, Pierga J Y. The impact of expression profiling on prognostic and predictive testing in breast cancer. J Clin Pathol 2006; 59: 225–231
  • Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100: 8418–8423
  • Geyer C E, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733–2743
  • Joensuu H, Kellokumpu-Lehtinen P L, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006; 354: 809–820
  • Piccart-Gebhart M J, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–1672
  • Romond E H, Perez E A, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–1684
  • Slamon D J, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792
  • Rouzier R, Perou C M, Symmans W F, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11: 5678–5685
  • Abd El-Rehim D M, Pinder S E, Paish C E, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 2004; 203: 661–671
  • Gusterson B A, Ross D T, Heath V J, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 2005; 7: 143–148
  • Nielsen T O, Hsu F D, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367–5374
  • Rakha E A, Putti T C, Abd El-Rehim D M, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 2006; 208: 495–506
  • Savage K, Lambros M B, Robertson D, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 2007; 13: 90–101
  • Savage K, Leung S, Todd S K, et al. Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis. Breast Cancer Res Treat 2008; 110: 245–256
  • Turner N C, Reis-Filho J S. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 2006; 25: 5846–5853
  • van de Rijn M, Perou C M, Tibshirani R, et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 2002; 161: 1991–1996
  • Fulford L G, Easton D F, Reis-Filho J S, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 2006; 49: 22–34
  • Livasy C A, Karaca G, Nanda R, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19: 264–271
  • Reis-Filho J S, Milanezi F, Steele D, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology 2006; 49: 10–21
  • Turner N C, Reis-Filho J S, Russell A M, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 2007; 26: 2126–2132
  • Liu X, Holstege H, van der Gulden H, et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 2007; 104: 12111–12116
  • McCarthy A, Savage K, Gabriel A, et al. A mouse model of basal-like breast carcinoma with metaplastic elements. J Pathol 2007; 211: 389–398
  • Dairkee S H, Mayall B H, Smith H S, Hackett A J. Monoclonal marker that predicts early recurrence of breast cancer. Lancet 1987; 1: 514
  • Gould V E, Koukoulis G K, Jansson D S, et al. Coexpression patterns of vimentin and glial filament protein with cytokeratins in the normal, hyperplastic, and neoplastic breast. Am J Pathol 1990; 137: 1143–1155
  • Malzahn K, Mitze M, Thoenes M, Moll R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch 1998; 433: 119–129
  • Murad T M, Scharpelli D G. The ultrastructure of medullary and scirrhous mammary duct carcinoma. Am J Pathol 1967; 50: 335–360
  • Santini D, Ceccarelli C, Taffurelli M, Pileri S, Marrano D. Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J Pathol 1996; 179: 386–391
  • Kreike B, van Kouwenhove M, Horlings H, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 2007; 9: R65
  • Banerjee S, Reis-Filho J S, Ashley S, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 2006; 59: 729–735
  • Rakha E A, El-Sayed M E, Green A R, et al. Prognostic markers in triple-negative breast cancer. Cancer 2007; 109: 25–32
  • Rakha E A, Tan D S, Foulkes W D, et al. Are triple-negative tumours and basal-like breast cancer synonymous?. Breast Cancer Res 2007; 9: 404, author reply 405
  • Cheang M C, Voduc D, Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008; 14: 1368–1376
  • Bertucci F, Finetti P, Cervera N, et al. How basal are triple-negative breast cancers?. Int J Cancer 2008; 123: 236–240
  • Calza S, Hall P, Auer G, et al. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 2006; 8: R34
  • Jumppanen M, Gruvberger-Saal S, Kauraniemi P, et al. Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res 2007; 9: R16
  • Tan D S, Marchio C, Jones R L, et al. Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 2008; 111: 27–44
  • Parker J, Mullins M, Cheang M C, et al. A supervised risk predictor of breast cancer based on biological subtypes. J Clin Oncol 2008; 26: (in press)
  • Perreard L, Fan C, Quackenbush J F, et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 2006; 8: R23
  • Rakha E A, Reis-Filho J S, Ellis I O. Basal-like breast cancer: a critical review. J Clin Oncol 2008; 26: 2568–2581
  • Abd El-Rehim D M, Ball G, Pinder S E, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 2005; 116: 340–350
  • Fulford L G, Reis-Filho J S, Ryder K, et al. Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 2007; 9: R4
  • Carey L A, Dees E C, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–2334
  • Dent R, Trudeau M, Pritchard K I, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007; 13: 4429–4434
  • Liedtke C, Mazouni C, Hess K R, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275–1281
  • Jones C, Ford E, Gillett C, et al. Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res 2004; 10: 5988–5997
  • Honeth G, Bendahl P O, Ringner M, et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10: R53
  • Wright M H, Calcagno A M, Salcido C D, et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10: R10
  • Krag D, Weaver D, Ashikaga T, et al. The sentinel node in breast cancer—a multicenter validation study. N Engl J Med 1998; 339: 941–946
  • Veronesi U, Paganelli G, Galimberti V, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 1997; 349: 1864–1867
  • Rutgers E J. Sentinel node biopsy: interpretation and management of patients with immunohistochemistry-positive sentinel nodes and those with micrometastases. J Clin Oncol 2008; 26: 698–702
  • Viale G, Maiorano E, Mazzarol G, et al. Histologic detection and clinical implications of micrometastases in axillary sentinel lymph nodes for patients with breast carcinoma. Cancer 2001; 92: 1378–1384
  • Eifel P, Axelson J A, Costa J, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst 2001; 93: 979–989
  • Goldhirsch A, Wood W C, Gelber R D, et al. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol 2003; 21: 3357–3365
  • van't Veer L J, Dai H, van de Vijver M J, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536
  • Buyse M, Loi S, van't Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006; 98: 1183–1192
  • van de Vijver M J, He Y D, van't Veer L J, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009
  • Wang Y, Klijn J G, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679
  • Dunkler D, Michiels S, Schemper M. Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis?. Eur J Cancer 2007; 43: 745–751
  • Eden P, Ritz C, Rose C, Ferno M, Peterson C. ‘Good Old’ clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 2004; 40: 1837–1841
  • Lu X, Lu X, Wang Z C, et al. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 2008; 108: 191–201
  • Fan C, Oh D S, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006; 355: 560–569
  • Sotiriou C, Piccart M J. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?. Nat Rev Cancer 2007; 7: 545–553
  • Ioannidis J P. Microarrays and molecular research: noise discovery?. Lancet 2005; 365: 454–455
  • Michiels S, Koscielny S, Hill C. Interpretation of microarray data in cancer. Br J Cancer 2007; 96: 1155–1158
  • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 2006; 103: 5923–5928
  • Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 2005; 23: 7332–7341
  • Simon R, Radmacher M D, Dobbin K, McShane L M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003; 95: 14–18
  • Shi L, Reid L H, Jones W D, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24: 1151–1161
  • Ravo M, Mutarelli M, Ferraro L, et al. Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays. Lab Invest 2008; 88: 430–440
  • Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–2826
  • Esteva F J, Sahin A A, Cristofanilli M, et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res 2005; 11: 3315–3319
  • Mina L, Soule S E, Badve S, et al. Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue. Breast Cancer Res Treat 2007; 103: 197–208
  • Flanagan M B, Dabbs D J, Brufsky A M, Beriwal S, Bhargava R. Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol 2008; 21: 1255–1261
  • Pusztai L, Cristofanilli M, Paik S. New generation of molecular prognostic and predictive tests for breast cancer. Semin Oncol 2007; 34: S10–S16
  • Rosai J. Why microscopy will remain a cornerstone of surgical pathology. Lab Invest 2007; 87: 403–408
  • Ma X J, Salunga R, Tuggle J T, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979
  • Elston C W, Ellis I O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991; 19: 403–410
  • Robbins P, Pinder S, de Klerk N, et al. Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol 1995; 26: 873–879
  • Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006; 98: 262–272
  • Desmedt C, Sotiriou C. Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 2006; 5: 2198–2202
  • Loi S, Haibe-Kains B, Desmedt C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 2007; 25: 1239–1246
  • Ivshina A V, George J, Senko O, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 2006; 66: 10292–10301
  • Ma X J, Salunga R, Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 2008; 14: 2601–2608
  • Andre F, Mazouni C, Hortobagyi G N, Pusztai L. DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. Biochim Biophys Acta 2006; 1766: 197–204
  • Andre F, Pusztai L. Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 2006; 3: 621–632
  • Tordai A, Wang J, Andre F, et al. Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 2008; 10: R37
  • Loi S, Haibe-Kains B, Desmedt C, et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 2008; 9: 239
  • Ma X J, Wang Z, Ryan P D, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5: 607–616
  • Reid J F, Lusa L, De Cecco L, et al. Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 2005; 97: 927–930
  • Goetz M P, Suman V J, Ingle J N, et al. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 2006; 12: 2080–2087
  • Ma X J, Hilsenbeck S G, Wang W, et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 2006; 24: 4611–4619
  • Hudis C A. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 2007; 357: 39–51
  • Harris L N, You F, Schnitt S J, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 2007; 13: 1198–1207
  • Muss H B, Thor A D, Berry D A, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994; 330: 1260–1266
  • Paik S, Bryant J, Park C, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 1998; 90: 1361–1370
  • Wang J C. DNA topoisomerases. Annu Rev Biochem 1996; 65: 635–692
  • Arriola E, Marchio C, Tan D S, et al. Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 2008; 88: 491–503
  • Arriola E, Rodriguez-Pinilla S M, Lambros M B, et al. Topoisomerase II alpha amplification may predict benefit from adjuvant anthracyclines in HER2 positive early breast cancer. Breast Cancer Res Treat 2007; 106: 181–189
  • Hicks D G, Yoder B J, Pettay J, et al. The incidence of topoisomerase II-alpha genomic alterations in adenocarcinoma of the breast and their relationship to human epidermal growth factor receptor-2 gene amplification: a fluorescence in situ hybridization study. Hum Pathol 2005; 36: 348–356
  • Jarvinen T A, Tanner M, Barlund M, Borg A, Isola J. Characterization of topoisomerase II alpha gene amplification and deletion in breast cancer. Genes Chromosomes Cancer 1999; 26: 142–150
  • Orlando L, Del Curto B, Gandini S, et al. Topoisomerase IIalpha gene status and prediction of pathological complete remission after anthracycline-based neoadjuvant chemotherapy in endocrine non-responsive Her2/neu-positive breast cancer. Breast 2008; 17: 506–511
  • Tanner M, Isola J, Wiklund T, et al. Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol 2006; 24: 2428–2436
  • Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6: 17–32
  • Beck A H, Espinosa I, Gilks C B, van de Rijn M, West R B. The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 2008; 88: 591–601
  • Bergamaschi A, Tagliabue E, Sorlie T, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 2008; 214: 357–367
  • Casey T, Bond J, Tighe S, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 2008; Mar 29, Epub ahead of print
  • Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14: 518–527
  • Weigelt B, Bissell M J. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 2008; 18: 311–321
  • West R B, Nuyten D S, Subramanian S, et al. Determination of stromal signatures in breast carcinoma. PLoS Biol 2005; 3: e187
  • Hu M, Yao J, Carroll D K, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 2008; 13: 394–406
  • Jones C, Mackay A, Grigoriadis A, et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 2004; 64: 3037–3045
  • Teschendorff A E, Miremadi A, Pinder S E, Ellis I O, Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 2007; 8: R157
  • Tan D S, Lambros M B, Natrajan R, Reis-Filho J S. Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest 2007; 87: 737–754
  • Bergamaschi A, Kim Y H, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006; 45: 1033–1040
  • Hicks J, Krasnitz A, Lakshmi B, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 2006; 16: 1465–1479
  • Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006; 10: 529–541
  • Vogelstein B, Fearon E R, Hamilton S R, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–532
  • Buerger H, Otterbach F, Simon R, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 1999; 187: 396–402
  • Buerger H, Otterbach F, Simon R, et al. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 1999; 189: 521–526
  • Roylance R, Gorman P, Harris W, et al. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 1999; 59: 1433–1436
  • Stange D E, Radlwimmer B, Schubert F, et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res 2006; 12: 345–352
  • Cleton-Jansen A M, Buerger H, Haar N, et al. Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes Cancer 2004; 41: 109–116
  • Waldman F M, DeVries S, Chew K L, et al. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 2000; 92: 313–320
  • Allred D C, Wu Y, Mao S, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 2008; 14: 370–378
  • Weigelt B, Horlings H, Kreike B, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 2008; 216: 141–150
  • Kumar R, Neilsen P M, Crawford J, et al. FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res 2005; 65: 11304–11313
  • Rakha E A, Green A R, Powe D G, Roylance R, Ellis I O. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 2006; 45: 527–535
  • van Wezel T, Lombaerts M, van Roon E H, et al. Expression analysis of candidate breast tumour suppressor genes on chromosome 16q. Breast Cancer Res 2005; 7: R998–1004
  • Cleton-Jansen A M. E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?. Breast Cancer Res 2002; 4: 5–8
  • Vos C B, Cleton-Jansen A M, Berx G, et al. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 1997; 76: 1131–1133
  • Droufakou S, Deshmane V, Roylance R, et al. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 2001; 92: 404–408
  • Sarrio D, Moreno-Bueno G, Hardisson D, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 2003; 106: 208–215
  • Jacobs T W, Pliss N, Kouria G, Schnitt S J. Carcinomas in situ of the breast with indeterminate features: role of E-cadherin staining in categorization. Am J Surg Pathol 2001; 25: 229–236
  • Maluf H M. Differential diagnosis of solid carcinoma in situ. Semin Diagn Pathol 2004; 21: 25–31
  • Nishizaki T, Chew K, Chu L, et al. Genetic alterations in lobular breast cancer by comparative genomic hybridization. Int J Cancer 1997; 74: 513–517
  • Palacios J, Sarrio D, Garcia-Macias M C, et al. Frequent E-cadherin gene inactivation by loss of heterozygosity in pleomorphic lobular carcinoma of the breast. Mod Pathol 2003; 16: 674–678
  • Reis-Filho J S, Simpson P T, Jones C, et al. Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 2005; 207: 1–13
  • Simpson P, Reis-Filho J, Lambros M, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 2008; 215: 231–244
  • Boecker W, Buerger H, Schmitz K, et al. Ductal epithelial proliferations of the breast: a biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 2001; 195: 415–421
  • Boecker W, Moll R, Dervan P, et al. Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol 2002; 198: 458–467
  • O'Connell P. Genetic and cytogenetic analyses of breast cancer yield different perspectives of a complex disease. Breast Cancer Res Treat 2003; 78: 347–357
  • Simpson P T, Gale T, Reis-Filho J S, et al. Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 2005; 29: 734–746
  • Jones C, Nonni A V, Fulford L, et al. CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer 2001; 85: 422–427
  • Abdel-Fatah T M, Powe D G, Hodi Z, et al. High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 2007; 31: 417–426
  • Tognon C, Knezevich S R, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367–376
  • Diallo R, Schaefer K L, Bankfalvi A, et al. Secretory carcinoma of the breast: a distinct variant of invasive ductal carcinoma assessed by comparative genomic hybridization and immunohistochemistry. Hum Pathol 2003; 34: 1299–1305
  • Diallo R, Tognon C, Knezevich S R, Sorensen P, Poremba C. Secretory carcinoma of the breast: a genetically defined carcinoma entity. Verh Dtsch Ges Pathol 2003; 87: 193–203
  • Makretsov N, He M, Hayes M, et al. A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosomes Cancer 2004; 40: 152–157
  • Reis-Filho J S, Natrajan R, Vatcheva R, et al. Is acinic cell carcinoma a variant of secretory carcinoma? A FISH study using ETV6 ‘split apart’ probes. Histopathology 2008; 52: 840–846
  • Lakhani S R, Jacquemier J, Sloane J P, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 1998; 90: 1138–1145
  • Honrado E, Benitez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 2005; 18: 1305–1320
  • Tan D S, Marchio C, Reis-Filho J S. Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol 2008; 61: 1073–1082
  • Lakhani S R, Van De Vijver M J, Jacquemier J, et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 2002; 20: 2310–2318
  • Lakhani S R, Reis-Filho J S, Fulford L, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005; 11: 5175–5180
  • Foulkes W D, Stefansson I M, Chappuis P O, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003; 95: 1482–1485
  • Marchio C, Iravani M, Natrajan R, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 2008; 215: 398–410
  • Weinstein I B. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002; 297: 63–64
  • Weinstein I B, Joe A K. Mechanisms of disease: Oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 2006; 3: 448–457

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.