43
Views
2
CrossRef citations to date
0
Altmetric
Reviews

The clinicopathological relevance of microRNA in normal and malignant haematopoiesis

, &
Pages 204-213 | Received 11 Sep 2008, Accepted 17 Nov 2008, Published online: 06 Jul 2009

References

  • Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854
  • Ruvkun G, Giusto J. The caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 1989; 338: 313–319
  • Wightman B, Burglin T R, Gatto J, Arasu P, Ruvkun G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during caenorhabditis elegans development. Genes Dev 1991; 5: 1813–1824
  • Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in c. Elegans. Cell 1989; 57: 49–57
  • Arasu P, Wightman B, Ruvkun G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev 1991; 5: 1825–1833
  • Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906
  • Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86–89
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858
  • Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862
  • Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864
  • Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004; 23: 4051–4060
  • Lee Y, Ahn C, Han J, et al. The nuclear RNAse III drosha initiates microRNA processing. Nature 2003; 425: 415–419
  • Lee Y, Jeon K, Lee J T, Kim S, Kim V N. MicroRNA maturation: stepwise processing and subcellular localization. Embo J 2002; 21: 4663–4670
  • Aravin A A, Lagos-Quintana M, Yalcin A, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003; 5: 337–350
  • Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617–631
  • Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831
  • Yi R, Qin Y, Macara I G, Cullen B R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17: 3011–3016
  • Bohnsack M T, Czaplinski K, Gorlich D. Exportin 5 is a ranGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10: 185–191
  • Lund E, Guttinger S, Calado A, Dahlberg J E, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95–98
  • Bernstein E, Caudy A A, Hammond S M, Hannon G J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366
  • Grishok A, Pasquinelli A E, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23–34
  • Hutvagner G, McLachlan J, Pasquinelli A E, Balint E, Tuschl T, Zamore P D. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293: 834–838
  • Ketting R F, Fischer S E, Bernstein E, Sijen T, Hannon G J, Plasterk R H. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15: 2654–2659
  • Knight S W, Bass B L. A role for the RNAse III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001; 293: 2269–2271
  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563–574
  • Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216
  • Schwarz D S, Hutvagner G, Du T, Xu Z, Aronin N, Zamore P D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208
  • Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498
  • Hutvagner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297: 2056–2060
  • Kasschau K D, Xie Z, Allen E, et al. P1/hc-pro, a viral suppressor of RNA silencing, interferes with arabidopsis development and miRNA function. Dev Cell 2003; 4: 205–217
  • Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304: 594–596
  • Bagga S, Bracht J, Hunter S, et al. Regulation by let–7 and lin–4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–563
  • Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297
  • Humphreys D T, Westman B J, Martin D I, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4e/cap and poly(a) tail function. Proc Natl Acad Sci USA 2005; 102: 16961–16966
  • Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 2005; 309: 1573–1576
  • Maroney P A, Yu Y, Fisher J, Nilsen T W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 2006; 13: 1102–1107
  • Wu L, Fan J, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006; 103: 4034–4039
  • Liu J, Valencia-Sanchez M A, Hannon G J, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian p-bodies. Nat Cell Biol 2005; 7: 719–723
  • Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310: 486–489
  • Saetrom P, Heale B S, Snove O, Jr, Aagaard L, Alluin J, Rossi J J. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 2007; 35: 2333–2342
  • Doench J G, Petersen C P, Sharp P A. SiRNAs can function as miRNAs. Genes Dev 2003; 17: 438–442
  • Vella M C, Choi E Y, Lin S Y, Reinert K, Slack F J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev 2004; 18: 132–137
  • Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 2006; 13: 849–851
  • Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007; 27: 91–105
  • Lytle J R, Yario T A, Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci USA 2007; 104: 9667–9672
  • Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455: 1124–1128
  • Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science 2007; 318: 1931–1934
  • Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation. RNA 2003; 9: 277–279
  • Griffiths-Jones S, Saini H, van Dongen S, Enright A. Mirbase: Tools for microRNA genomics. Nucleic Acids Res 2008; 36(database issue)D154–D158
  • Sempere L F, Cole C N, McPeek M A, Peterson K J. The phylogenetic distribution of metazoan microRNAs: Insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 2006; 306: 575–588
  • Liu C G, Calin G A, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004; 101: 9740–9744
  • Chen C Z, Li L, Lodish H F, Bartel D P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86
  • Johnnidis J B, Harris M H, Wheeler R T, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129
  • Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007; 9: 775–787
  • Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 2007; 104: 19849–19854
  • Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081–18086
  • Wang C L, Wang B B, Bartha G, et al. Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci USA 2006; 103: 18680–18684
  • Fujiwara Y, Browne C P, Cunniff K, Goff S C, Orkin S H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996; 93: 12355–12358
  • Dore L C, Amigo J D, Dos Santos C O, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 2008; 105: 3333–3338
  • Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083
  • Neilson J R, Zheng G X, Burge C B, Sharp P A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 2007; 21: 578–589
  • Nakayama T, Kasprowicz D J, Yamashita M, et al. The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J Immunol 2002; 168: 87–94
  • Alfonso C, McHeyzer-Williams M G, Rosen H. CD69 down-modulation and inhibition of thymic egress by short- and long-term selective chemical agonism of sphingosine 1-phosphate receptors. Eur J Immunol 2006; 36: 149–159
  • Shiow L R, Rosen D B, Brdickova N, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006; 440: 540–544
  • Georgantas R W, 3rd, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750–2755
  • Singh S K, Kagalwala M N, Parker-Thornburg J, Adams H, Majumder S. Rest maintains self-renewal and pluripotency of embryonic stem cells. Nature 2008; 453: 223–227
  • Dohner H, Stilgenbauer S, Dohner K, Bentz M, Lichter P. Chromosome aberrations in b-cell chronic lymphocytic leukemia: Reassessment based on molecular cytogenetic analysis. J Mol Med 1999; 77: 266–281
  • Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529
  • Raveche E S, Salerno E, Scaglione B J, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086
  • Cimmino A, Calin G A, Fabbri M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949
  • Calin G A, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171
  • Calin G A, Liu C G, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760
  • Calin G A, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801
  • Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207: 243–249
  • Rodriguez A, Vigorito E, Clare S, et al. Requirement of BIC/microRNA-155 for normal immune function. Science 2007; 316: 608–611
  • Thai T H, Calado D P, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604–608
  • Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029
  • He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833
  • Chen R W, Bemis L T, Amato C M, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 2008; 112: 822–829
  • Lawrie C H, Saunders N J, Soneji S, et al. MicroRNA expression in lymphocyte development and malignancy. Leukemia 2008; 22: 1440–1446
  • Lawrie C H, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 2007; 121: 1156–1161
  • Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672–675
  • Xi Y, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007; 13: 1668–1674
  • Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518
  • Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007; 109: 4399–4405
  • Bueno M J, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008; 13: 496–506
  • Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young B D. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 2007; 21: 912–916
  • Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007; 104: 19971–19976
  • Jongen-Lavrencic M, Sun S M, Dijkstra M K, Valk P J, Lowenberg B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085
  • Marcucci G, Radmacher M D, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928
  • O'Connell R M, Rao D S, Chaudhuri A A, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594
  • Schotte D, Chau J C, Sylvester G, et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322
  • Marcucci G, Stock W, Dai G, et al. Phase I study of oblimersen sodium, an antisense to BCL-2, in untreated older patients with acute myeloid leukemia: Pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005; 23: 3404–3411
  • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899
  • Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.