776
Views
45
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

, , , , &
Pages 192-203 | Received 08 Jun 2007, Accepted 24 Jul 2007, Published online: 08 Jul 2009

References

  • Graham R. M., Bishopric N. H., Webster K. A. Gene and cell therapy for heart disease. IUBMB Life 2002; 54: 59–66
  • Hamano K., Li T. S., Kobayashi T., Tanaka N., Kobayashi S., Matsuzaki M., et al. The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method. Surgery 2001; 130: 44–54
  • Siepe M., Heilmann C., von Samson P., Menasche P., Beyersdorf F. Stem cell research and cell transplantation for myocardial regeneration. Eur J Cardiothorac Surg 2005
  • Yongzhong W., Johnsen H. E., Jorgensen E., Kastrup J. The clinical impact of vascular growth factors and endothelial progenitor cells in the acute coronary syndrome. Scand Cardiovasc J 2003; 37: 18–22
  • Lee M. S., Lill M., Makkar R. R. Stem cell transplantation in myocardial infarction. Rev Cardiovasc Med 2004; 5: 82–98
  • Minguell J. J., Erices A., Conget P. Mesenchymal stromal cells. Exp Biol Med (Maywood) 2001; 226: 507–20
  • Fuchs S., Baffour R., Zhou Y. F., Shou M., Pierre A., Tio F. O., et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37: 1726–32
  • Kamihata H., Matsubara H., Nishiue T., Fujiyama S., Tsutsumi Y., Ozono R., et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046–52
  • Kocher A. A., Schuster M. D., Szabolcs M. J., Takuma S., Burkhoff D., Wang J., et al. Neovascularization of ischemic myocardium by human bone‐marrow‐derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430–6
  • Liu Y., Guo J., Zhang P., Zhang S., Chen P., Ma K., et al. Bone marrow mononuclear cell transplantation into heart elevates the expression of angiogenic factors. Microvasc Res 2004; 68: 156–60
  • Shyu K. G., Wang B. W., Hung H. F., Chang C. C., Shih D. T. Mesenchymal stromal cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. J Biomed Sci 2006; 13: 47–58
  • Assmus B., Schachinger V., Teupe C., Britten M., Lehmann R., Dobert N., et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE‐AMI). Circulation 2002; 106: 3009–17
  • Fernandez‐Aviles F., San Roman J. A., Garcia‐Frade J., Fernandez M. E., Penarrubia M. J., et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95: 742–8
  • Galinanes M., Loubani M., Davies J., Chin D., Pasi J., Bell P. R. Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 2004; 13: 7–13
  • Schachinger V., Erbs S., Elsasser A., Haberbosch W., Hambrecht R., Holschermann H., et al. Intracoronary bone marrow‐derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355: 1210–21
  • Strauer B. E., Brehm M., Zeus T., Kostering M., Hernandez A., Sorg R. V., et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913–18
  • Wollert K. C., Meyer G. P., Lotz J., Ringes‐Lichtenberg S., Lippolt P., Breidenbach C., et al. Intracoronary autologous bone‐marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141–8
  • Beeres S. L., Bax J. J., Kaandorp T. A., Zeppenfeld K., Lamb H. J., bbets‐Schneider P., et al. Usefulness of intramyocardial injection of autologous bone marrow‐derived mononuclear cells in patients with severe angina pectoris and stress‐induced myocardial ischemia. Am J Cardiol 2006; 97: 1326–31
  • Fuchs S., Satler L. F., Kornowski R., Okubagzi P., Weisz G., Baffour R., et al. Catheter‐based autologous bone marrow myocardial injection in no‐option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003; 41: 1721–4
  • Kuethe F., Richartz B. M., Kasper C., Sayer H. G., Hoeffken K., Werner G. S., et al. Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 2005; 100: 485–91
  • Perin E. C., Dohmann H. F., Borojevic R., Silva S. A., Sousa A. L., Mesquita C. T., et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294–302
  • Stamm C., Westphal B., Kleine H. D., Petzsch M., Kittner C., Klinge H., et al. Autologous bone‐marrow stem‐cell transplantation for myocardial regeneration. Lancet 2003; 361: 45–6
  • Tse H. F., Kwong Y. L., Chan J. K., Lo G., Ho C. L., Lau C. P. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361: 47–9
  • Ince H., Nienaber C. A. Future investigations in stem cell activation with granulocyte‐colony‐stimulating factor after myocardial infarction. Nat Clin Pract Cardiovasc Med 2007; 4 Suppl 1: S119–22
  • Jorgensen E., Ripa R. S., Helqvist S., Wang Y., Johnsen H. E., Grande P., et al. In‐stent neo‐intimal hyperplasia after stem cell mobilization by granulocyte‐colony stimulating factor. Preliminary intracoronary ultrasound results from a double‐blind randomized placebo‐controlled study of patients treated with percutaneous coronary intervention for ST‐elevation myocardial infarction (STEMMI Trial). Int J Cardiol 2006; 111: 174–7
  • Ripa R. S., Jorgensen E., Wang Y., Thune J. J., Nilsson J. C., Sondergaard L., et al. Stem cell mobilization induced by subcutaneous granulocyte‐colony stimulating factor to improve cardiac regeneration after acute ST‐elevation myocardial infarction: result of the double‐blind, randomized, placebo‐controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006; 113: 1983–92
  • Wang Y., Tagil K., Ripa R. S., Nilsson J. C., Carstensen S., Jorgensen E., et al. Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol 2005; 100: 477–83
  • Janssens S., Dubois C., Bogaert J., Theunissen K., Deroose C., Desmet W., et al. Autologous bone marrow‐derived stem‐cell transfer in patients with ST‐segment elevation myocardial infarction: double‐blind, randomised controlled trial. Lancet 2006; 367: 113–21
  • Lunde K., Solheim S., Aakhus S., Arnesen H., Abdelnoor M., Egeland T., et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355: 1199–209
  • Oswald J., Boxberger S., Jorgensen B., Feldmann S., Ehninger G., Bornhauser M., et al. Mesenchymal stromal cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22: 377–84
  • Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., et al. Multilineage potential of adult human mesenchymal stromal cells. Science 1999; 284: 143–7
  • Silva G. V., Litovsky S., Assad J. A., Sousa A. L., Martin B. J., Vela D., et al. Mesenchymal stromal cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005; 111: 150–6
  • Iwase T., Nagaya N., Fujii T., Itoh T., Murakami S., Matsumoto T., et al. Comparison of angiogenic potency between mesenchymal stromal cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 2005; 66: 543–51
  • Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P. H., Verfaillie C. M. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–46
  • Kanayasu‐Toyoda T., Yamaguchi T., Oshizawa T., Hayakawa T. CD31 (PECAM‐1)‐bright cells derived from AC133‐positive cells in human peripheral blood as endothelial‐precursor cells. J Cell Physiol 2003; 195: 119–29
  • Kawamoto A., Gwon H. C., Iwaguro H., Yamaguchi J. I., Uchida S., Masuda H., et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634–7
  • Bindslev L., Haack‐Sorensen M., Bisgaard K., Kragh L., Mortensen S., Hesse B., et al. Labelling of human mesenchymal stromal cells with indium‐111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 2006; 33: 1171–7
  • Haack‐Sorensen M., Bindslev L., Mortensen S., Friis T., Kastrup J. The influence of freezing and storage on characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy 2007. In press
  • Rickard D. J., Kassem M., Hefferan T. E., Sarkar G., Spelsberg T. C., Riggs B. L. Isolation and characterization of osteoblast precursor cells from human bone marrow 1. J Bone Miner Res 1996; 11: 312–24
  • Reyes M., Verfaillie C. M. Characterization of multipotent adult progenitor cells: a subpopulation of mesenchymal stromal cells. Ann NY Acad Sci 2001; 938: 231–3
  • Prockop D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–4
  • Sekiya I., Larson B. L., Smith J. R., Pochampally R., Cui J. G., Prockop D. J. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002; 20: 530–41
  • Gregory C. A., Prockop D. J., Spees J. L. Non‐hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 2005; 306: 330–5
  • Herzog E. L., Chai L., Krause D. S. Plasticity of marrow‐derived stem cells. Blood 2003; 102: 3483–93
  • Kassem M., Kristiansen M., Abdallah B. M. Mesenchymal stromal cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 2004; 95: 209–14
  • Kim D. H., Yoo K. H., Choi K. S., Choi J., Choi S. Y., Yang S. E., et al. Gene expression profile of cytokine and growth factor during differentiation of bone marrow‐derived mesenchymal stromal cells. Cytokine 2005; 31: 119–26
  • Mizuno N., Shiba H., Ozeki Y., Mouri Y., Niitani M., Inui T., et al. Human autologous serum obtained using a completely closed bag system as a substitute for foetal calf serum in human mesenchymal stromal cell cultures. Cell Biol Int 2006; 30: 521–4
  • Stute N., Holtz K., Bubenheim M., Lange C., Blake F., Zander A. R. Autologous serum for isolation and expansion of human mesenchymal stromal cells for clinical use. Exp Hematol 2004; 32: 1212–25
  • Gronthos S., Simmons P. J. The growth factor requirements of STRO‐1‐positive human bone marrow stromal precursors under serum‐deprived conditions in vitro. Blood 1995; 85: 929–40
  • Meuleman N., Tondreau T., Delforge A., Dejeneffe M., Massy M., Libertalis M., et al. Human marrow mesenchymal stromal cell culture: serum‐free medium allows better expansion than classical alpha‐MEM medium. Eur J Haematol 2006; 76: 309–16
  • Muller I., Kordowich S., Holzwarth C., Spano C., Isensee G., Staiber A., et al. Animal serum‐free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006; 8: 437–44
  • Li T. S., Hamano K., Nishida M., Hayashi M., Ito H., Mikamo A., et al. CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. Am J Physiol Heart Circ Physiol 2003; 285: H931–7
  • Matsumura G., Miyagawa‐Tomita S., Shin'oka T., Ikada Y., Kurosawa H. First evidence that bone marrow cells contribute to the construction of tissue‐engineered vascular autografts in vivo. Circulation 2003; 108: 1729–34
  • Min J. Y., Sullivan M. F., Yang Y., Zhang J. P., Converso K. L., Morgan J. P., et al. Significant improvement of heart function by cotransplantation of human mesenchymal stromal cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg 2002; 74: 1568–75
  • Wang J. S., Shum‐Tim D., Chedrawy E., Chiu R. C. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 2001; 122: 699–705
  • Katritsis D. G., Sotiropoulou P. A., Karvouni E., Karabinos I., Korovesis S., Perez S. A., et al. Transcoronary transplantation of autologous mesenchymal stromal cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005; 65: 321–9
  • Katritsis D. G., Sotiropoulou P., Giazitzoglou E., Karvouni E., Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace 2007
  • Luyten F. P. Mesenchymal stromal cells in osteoarthritis. Curr Opin Rheumatol 2004; 16: 599–603
  • Lazarus H. M., Haynesworth S. E., Gerson S. L., Rosenthal N. S., Caplan A. I. Ex vivo expansion and subsequent infusion of human bone marrow‐derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–64
  • Lazarus H. M., Koc O. N., Devine S. M., Curtin P., Maziarz R. T., Holland H. K., et al. Cotransplantation of HLA‐identical sibling culture‐expanded mesenchymal stromal cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–98
  • Bang O. Y., Lee J. S., Lee P. H., Lee G. Autologous mesenchymal stromal cell transplantation in stroke patients. Ann Neurol 2005; 57: 874–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.