135
Views
15
CrossRef citations to date
0
Altmetric
Original Article

The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43

, , , , , & show all
Pages 209-218 | Received 27 Mar 2008, Accepted 28 Aug 2008, Published online: 08 Jul 2009

References

  • Söti C., Nagy E., Giricz Z., Vígh L., Csermely P., Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146: 769–80
  • Otterbein L. E., Soares M. P., Yamashita K., Bach F. H. Heme oxygenase‐1: unleashing the protective properties of heme. Trends Immunol 2003; 24: 449–55
  • Morse D., Choi A. M. K. Heme oxygenase‐1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 2002; 27: 8–16
  • Morita T., Perrella M. A., Lee M‐E., Kourembanas S. Smooth muscle cell‐derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 1995; 92: 1475–9
  • Wang R., Wu L., Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflügers Arch Eur J Physiol 1997; 434: 285–91
  • Brune B., Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987; 32: 497–504
  • Duckers H. J., Boehm M., True A. L., Yet S‐F., San H., Park J. L., et al. Heme oxygenase‐1 protects against vascular constriction and proliferation. Nat Med 2001; 7: 693–8
  • Brouard S., Otterbein L. E., Anrather J., Tobiasch E., Bach F. H., Choi A. M. K., et al. Carbon monoxide generated by heme oxygenase‐1 suppresses endothelial cell apoptosis. J Exp Med 2000; 192: 1015–25
  • Otterbein L. E., Bach F. H., Alam J., Soares M., Tao Lu H., Wysk M., et al. Carbon monoxide has anti‐inflammatory effects involving the mitogen‐activated protein kinase pathway. Nat Med 2000; 6: 422–8
  • Csonka C., Varga E., Kovacs P., Ferdinandy P., Blasig I. E., Szilvassy Z., et al. Heme oxygenase and cardiac function in ischemic/reperfused rat hearts. Free Radic Biol Med 1999; 27: 119–26
  • Lakkisto P., Palojoki E., Bäcklund T., Saraste A., Tikkanen I., Voipio‐Pulkki L‐M., et al. Expression of heme oxygenase‐1 in response to myocardial infarction in rats. J Mol Cell Cardiol 2002; 34: 1357–65
  • Bak I., Papp G., Turoczi T., Varga E., Szendrei L., Vecsernyes M., et al. The role of heme oxygenase‐related carbon monoxide and ventricular fibrillation in ischemic/reperfused hearts. Free Radic Biol Med 2002; 33: 639–48
  • Bak I., Varadi J., Nagy N., Vecsernyes M., Tosaki A. The role of exogenous carbon monoxide in the recovery of post‐ischemic cardiac function in buffer perfused isolated rat hearts. Cell Mol Biol (Noisy‐le‐grand) 2005; 51: 453–9
  • Clark J. E., Foresti R., Sarathchndra P., Kaur H., Green C. J., Motterlini R. Heme oxygenase‐1 derived bilirubin ameliorates postischemic dysfunction. Am J Physiol Heart Circ Physiol 2000; 278: H643–51
  • Csonka C., Szilvássy Z., Fülöp F., Páli T., Blasig I. E., Tosaki A., et al. Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts. Circulation 1999; 100: 2260–6
  • Ferdinandy P., Das D. K., Tosaki A. Pacing‐induced ventricular fibrillation leading to oxygen free radical production in aerobically perfused rat hearts. J Mol Cell Cardiol 1993; 25: 683–92
  • Motterlini R., Gonzales A., Foresti R., Clark J. E., Green C. J., Winslow R. M. Heme oxygenase‐1‐derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ Res 1998; 83: 568–77
  • Tsuchihashi S., Zhai Y., Bo Q., Busuttil R. W., Kupiec‐Weglinski J. W. Heme oxygenase‐1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type‐1 interferon signalling. Transplantation 2007; 83: 1628–34
  • Szabo M. E., Gallyas E., Bak I., Rakotovao A., Boucher F., de Leiris J., et al. Heme oxygenase‐1‐related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Invest Ophthalmol Vis Sci 2004; 45: 3727–32
  • Balogun E., Foresti R., Green C. J., Motterlini R. Changes in temperature modulate heme oxygenase‐1 induction by curcumin in renal epithelial cells. Biochem Biophys Res Commun 2003; 308: 950–5
  • Guo Y., Stein A. B., Wu W‐J., Tan W., Zhu X., Li Q‐H., et al. Administration of a CO‐releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 2004; 286: H1649–53
  • Hangaishi M., Ishizaka N., Aizawa T., Kurihara Y., Taguchi J., Nagai R., et al. Induction of heme oxygenase‐1 can act protectively against cardiac ischemia/reperfusion in vivo. Biochem Biophys Res Commun 2000; 279: 582–8
  • Yang G., Nguyen X., Ou J., Rekulapelli P., Stevenson D. K., Dennery P. A. Unique effects of zinc protoporphyrin on HO‐1 induction and apoptosis. Blood 2001; 97: 1306–13
  • Lu R., Peng J., Xiao L., Deng H‐W., Li Y‐J. Heme oxygenase‐1 pathway is involved in delayed protection induced by heat stress against ischemia‐reperfusion injury. Int J Cardiol 2002; 82: 133–40
  • Yet S‐F., Tian R., Layne M. D., Wang Z. Y., Maemura K., Solovyeva M., et al. Cardiac‐specific expression of heme oxygenase‐1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 2001; 89: 168–73
  • Bazzani C., Guarini S., Botticelli A. R., Zaffe D., Tomasi A., Bini A., et al. Protective effect of melanocortin peptides in rat myocardial ischemia. J Pharmacol Exp Ther 2001; 297: 1082–7
  • Vecsernyes M., Juhasz B., Der P., Kocsan R., Feher P., Bacskay I., et al. The administration of α‐melanocyte‐stimulating hormone protects the ischemic/reperfused myocardium. Eur J Pharmacol 2003; 470: 177–83
  • Mioni C., Giuliani D., Cainazzo M. M., Leone S., Iannone C., Bazzani C., et al. Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. Eur J Pharmacol 2003; 477: 227–34
  • Juhasz B., Der P., Szodoray P., Gesztelyi R., Lekli I., Bak I., et al. Adrenocorticotrope hormone fragment (4–10) attenuates the ischemia/reperfusion‐induced cardiac injury in isolated rat hearts. Antioxid Redox Signal 2007; 9: 1851–61
  • Bak I., Szendrei L., Turoczi T., Papp G., Joo F., Das D. K., et al. Heme oxygenase‐1 related carbon monoxide production and ventricular fibrillation in isolated/reperfused mouse myocardium. FASEB J 2003; 17: 2133–5
  • Kharitonov V. G., Sharma V. S., Pilz R. B., Magde D., Koesling D. Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci USA 1995; 92: 2568–71
  • Pabla R., Bland‐Ward P., Moore P. K., Curtis M. J. An endogenous protectant effect of cardiac cyclic GMP against reperfusion‐induced ventricular fibrillation in the rat. Br J Pharmacol 1995; 116: 2923–30
  • Szilvassy Z., Ferdinandy P., Bor P., Jakab I., Lonovics J., Koltai M. Ventricular overdrive pacing‐induced anti‐ischemic effect: a conscious rabbit model of preconditioning. Am J Physiol 1994; 266: H2033–44
  • De Mello W. C. Atrial natriuretic factor reduces cell coupling in the failing heart, an effect mediated by cyclic GMP. J Cardiovasc Pharmacol 1998; 32: 75–9
  • Agullo L., Garcia‐Dorado D., Inserte J., Paniagua A., Pyrhönen P., Llevadot J., et al. L‐arginine limits myocardial cell death secondary to hypoxia‐reoxygenation by a cGMP‐dependent mechanism. Am J Physiol Heart Circ Physiol 1999; 276: H1574–80
  • Csont T., Páli T., Szilvássy Z., Ferdinandy P. Lack of correlation between myocardial nitric oxide and cyclic guanosine monophosphate content in both nitrate‐tolerant and nontolerant rats. Biochem Pharmacol 1998; 56: 1139–44
  • Severs N. J., Coppen S. R., Dupont E., Yeh H‐I., Ko Y‐S., Matsushita T. Gap junction alterations in human cardiac disease. Cardiovasc Res 2004; 62: 368–77
  • Schwanke U., Konietzka I., Duschin A., Li X., Schulz R., Heusch G. No ischemic preconditioning in heterozygous connexin43‐deficient mice. Am J Physiol Heart Circ Physiol 2002; 283: H1740–2
  • Schulz R., Gres P., Skyschally A., Duschin A., Belosjorow S., Konietzka I., et al. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 2003; 17: 1355–7
  • Vetterlein F., Mühlfeld C., Cetegen C., Volkmann R., Schrader C., Hellige G. Redistribution of connexin43 in regional acute ischemic myocardium: influence of ischemic preconditioning. Am J Physiol Heart Circ Physiol 2006; 291: H813–9
  • Boengler K., Schulz R., Heusch G. Connexin 43 signaling and cardioprotection. Heart 2006; 92: 1724–7
  • Crow D. S., Beyer E. C., Paul D. L., Kobe S. S., Lau A. F. Phosphorylation of connexin43 gap junction protein in uninfected and rous sarcoma virus‐transformed mammalian fibroblasts. Mol Cell Biol 1990; 10: 1754–63
  • Garcia‐Dorado D., Rodriguez‐Sinovas A., Ruiz‐Meana M. Gap junction‐mediated spread of cell injury and death during myocardial ischemia‐reperfusion. Cardiovasc Res 2004; 61: 386–401
  • Li X., Heinzel F. R., Boengler K., Schulz R., Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol 2004; 36: 161–3
  • Chakder S., Rathi S., Ma X‐L., Rattan S. Heme oxygenase inhibitor zinc protoporphyrin IX causes an activation of nitric oxide synthase in the rabbit internal anal sphincter. Am Soc Pharmacol Exp Ther 1996; 277: 1376–82
  • Meffert M. K., Haley J. E., Schuman E. M., Schulman H., Madison D. V. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long‐term potentiation by metalloporphyrins. Neuron 1994; 13: 1225–33
  • Serfass L., Burstyn J. N. Effect of heme oxygenase inhibitors on soluble guanylyl cyclase activity. Arch Biochem Biophys 1998; 359: 8–16
  • Kawahara K., Takase M., Yamauchi Y. Increased vulnerability to ischemia/reperfusion‐induced ventricular tachyarrhythmias by pre‐ischemic inhibition of nitric oxide synthase in isolated rat hearts. Cardiovasc Pathol 2003; 12: 49–56
  • Stein A. B., Tang X. L., Guo Y., Xuan Y. T., Dawn B., Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke 2004; 35: 2676–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.