122
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Western diets are not responsible for chronic acid retention: a critical analysis of organic acid and phosphate contribution

&
Pages 31-42 | Received 11 Apr 2017, Accepted 19 Nov 2017, Published online: 29 Nov 2017

References

  • Frassetto LA, Morris RC, Jr, Sebastian A. A practical approach to the balance between acid production and renal acid excretion in humans. J Nephrol. 2006;19:S33–S40.
  • Frassetto L, Morris RC, Jr, Sellmeyer DE, et al. Diet evolution and aging: the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr. 2001;40:200–213.
  • Sebastian A, Frassetto LA, Sellmeyer DE, et al. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002;76:1308–1316.
  • Lennon E, Lemann J, Litzow JR. The effect of diet and stool composition on the external acid balance in normal subjects. J Clin Invest. 1966; 45:601–607.
  • Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1955;95:791–797.
  • Frassetto LA, Morris RC, Jr, Sebastian A. Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271:F1114–F1F22.
  • New SA. Nutrition Society Medal lecture. The role of the skeleton in acid–base homeostasis. Proc Nutr Soc. 2002;61:151–164.
  • Lanou AJ. Should dairy be recommended as part of a healthy vegetarian diet? Counterpoint. Am J Clin Nutr. 2009;89:S1638–S1S42.
  • Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int. 1992;50:14–18.
  • Gonik HC, Goldberg G, Mulcare D. Reexamination of the acid–ash content of several diets. Am J Clin Nutr. 1968;21:898–903.
  • Bonjour JP. Nutritional disturbance in acid–base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br J Nutr. 2013;110:1168–1177.
  • Fenton TR, Eliasziw M, Lyon AW, et al. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid–ash diet hypothesis. Am J Clin Nutr. 2013;88:1159–1166.
  • Fenton TR, Lyon AW, Eliasziw M, et al. Meta-analysis of the effect of the acid–ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009;24:1835–1840.
  • Fenton TR, Lyon AW, Eliasziw M, et al. Phosphate decreases urine calcium and increases calcium balance: a meta-analysis of the osteoporosis acid–ash diet hypothesis. Nutr J. 2009;8:41.
  • Fenton TR, Lyon AW. Milk and acid–base balance: proposed hypothesis versus scientific evidence. J Am Coll Nutr. 2011;30:471S–475S.
  • Kildeberg P. Quantitative acid–base physiology. System physiology of renal, gastrointestinal and skeletal acid–base metabolism: physiological concepts. New York, Tokyo: Odense University Press and Igaku-Shoin editors; 1981. p. 81.
  • Lemann J Jr, Gray RW, Pleuss JA. Potassium bicarbonate but not sodium bicarbonate reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int. 1989;35:688–695.
  • Shohl AT, Sato A. Acid–base metabolism. I. Determination of base balance. J Biol Chem. 1924;58:235–255.
  • Atchley DW, Loeb RF, Richards DW, et al. On diabetic acidosis: detailed study of electrolyte balances following the withdrawal and the reestablishment of insulin therapy. J Clin Invest. 1933;12:297–326.
  • Reddy ST, Wang CY, Sakhaee K, et al. Effect of low-carbohydrate high-protein diets on acid–base balance, stone-forming propensity and calcium metabolism. Am J Kidney Dis. 2002;40:265–274.
  • Kildeberg P, Winters RW. Balance of net acid: concept, measurement and applications. Adv Pediatr. 1978;25:349–358.
  • Kildeberg P. Quantitative acid–base physiology. System physiology of renal, gastrointestinal and skeletal acid–base metabolism: physiological concepts. New York, Tokyo: Odense University Press and Igaku-Shoin editors; 1981. p. 63–67.
  • Kildeberg P. Quantitative acid–base physiology. System physiology of renal, gastrointestinal and skeletal acid–base metabolism: physiological concepts. New York, Tokyo: Odense University Press and Igaku-Shoin editors; 1981. p. 71–74.
  • Severinghaus JW. Acid–base balance nomogram. A Boston–Copenhagen detente. Anesthesiology. 1976;45:3–5.
  • Hill T, Lewicki P. Statistics: methods and applications. A comprehensive reference for science, industry and data miming. Stat Soft. 2006.
  • Kraut JA, Coburn JW. Bone, acid, and osteoporosis. N Engl J Med. 1994;330:1821–1822.
  • Remer T, Manz F. Paleolithic diet, sweet potato eaters and potential renal acid load. Am J Clin Nutr. 2003;78:802–804.
  • Kleinmann JG, Lemann J Jr. In: Maxwell MH, Kleinmann CR, Narins RG, editors. Clinical disorders of fluid and electrolyte metabolism: acid production. 4th ed. New York (NY): McGraw-Hill; 1987. p. 159–173.
  • Engel K, Kildeberg P. Physiological viewpoints on clinical acid–base diagnostics. Scand J Clin Lab Invest. 1977;146:21–26.
  • Lemann J, Jr., Bushinsky DA, Ham LL. Bone buffering of acid and base in humans. Am J Physiol. 2003;285:F811–FF32.
  • Halperin ML, Ethier JH, Kamel K. The excretion of ammonium ions and acid base balance. Clin Biochem. 1990;23:185–188.
  • Mioni R, Mioni G. Titratable acidity: a Pitts concept revisited. Scand J Clin Lab Invest. 2014;74:408–413.
  • Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–FF96.
  • Kerstetter JE, O’Brien KO, Caseria DM, et al. The impact of dietary protein on calcium absorption and kinetic measures on bone turnover in women. J Clin Endocrinol Metab. 2005;1:26–31.
  • Roughead ZK, Hunt JR, Johnson LK, et al. Controlled substitution of soy protein for meat protein: effect on calcium retention, bone, and cardiovascular health indices in postmenopausal women. J Clin Endocrinol Metab. 2005;90:181–189.
  • Krapf R, Glatz M, Hulter HN. Neutral phosphate administration generates and maintains renal metabolic alkalosis and hyperparathyroidism. Am J Physiol. 1995;268:F802–F8F7.
  • Buclin T, Cosma M, Appenzeller M, et al. Diet acids and alkalis influence calcium retention in bone. Osteoporosis. 2001;12:493–499.
  • Maurer M, Riesen W, Muser J, et al. Neutralization of western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol. 2002;284:F32–F40.
  • Oh MS. A new method for estimating G-I absorption of alkali. Kidney Int. 1989;36:915–917.
  • Adams ND, Gray RW, Lemann J Jr. The calciuria of increased fixed acid production in humans: evidence against a role for Parathyroid hormone and 1,25-(OH)2-vit-D. Calcif Tissue Int. 1979;27:233–239.
  • Weber HP, Gray RW, Dominguez JH, et al. The lack of effect of chronic metabolic acidosis on 25-(OH)-vitamin D metabolism and serum parathyroid hormone in humans. J Clin Endocrinol Metab. 1976;43:1047–1055.
  • Litzow JR, Lemann J, Jr, Lennon EJ. The effects of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest. 1967;46:280–286.
  • Bushinsky DA. Net calcium efflux from live bone during chronic metabolic, but not respiratory, acidosis. Am J Physiol Renal Fluid Electrolyte Physiol. 1989;256:F836–FF42.
  • Cohen RM, Feldman GM, Fernandez PC. The balance of acid, base and charge in health and disease. Kidney Int. 1997;52:287–293.
  • Uribarri J, Douyon H, Oh MSA. Re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995;47:624–627.
  • Leman J, Jr, Litzof JR, Lennon EJ. The effect of chronic acid load in normal man: further evidence for the participation of bone mineral in defense against chronic metabolic acidosis. J Clin Invest. 1966;45:1608–1614.
  • Bijvoet OL. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci. 1969;37:23–36.
  • Stauber A, Radanovic T, Stange G, et al. Regulation of intestinal phosphate transport II. Metabolic acidosis stimulates Na-dependent phosphate absorption, an expression of the Na–Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol. 2005;288:G501–G5G6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.