19
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Circulating microRNA-33b levels are associated with the presence and severity of coronary heart disease

, , , , , & show all
Pages 133-137 | Received 04 Oct 2023, Accepted 07 Jan 2024, Published online: 10 Apr 2024

References

  • Pagliaro P, Penna C. Inhibitors of NLRP3 inflammasome in ischemic heart disease: focus on functional and redox aspects. Antioxidants (Basel). 2023;12(7):1396. doi: 10.3390/antiox12071396.
  • Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation. 2018;138(9):898–912. doi: 10.1161/CIRCULATIONAHA.117.032636.
  • Wei QC, Chen YW, Gao QY, et al. Association of stress hyperglycemia with clinical outcomes in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention: a cohort study. Cardiovasc Diabetol. 2023;22(1):85. doi: 10.1186/s12933-023-01812-9.
  • Wang M, Su W, Cao N, et al. Prognostic implication of stress hyperglycemia in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Cardiovasc Diabetol. 2023;22(1):63. doi: 10.1186/s12933-023-01790-y.
  • Su Y, Sun Y, Tang Y, et al. Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure. J Am Heart Assoc. 2021;10:e022304.
  • Wang G, Luo Y, Gao X, et al. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci. 2023;80(6):144. doi: 10.1007/s00018-023-04793-w.
  • Ortega R, Liu B, Persaud SJ. Effects of miR-33 deficiency on metabolic and cardiovascular diseases: implications for therapeutic intervention. Int J Mol Sci. 2023;24(13):10777. doi: 10.3390/ijms241310777.
  • Duisenbek A, Lopez-Armas GC, Pérez M, et al. Insights into the role of plasmatic and exosomal microRNAs in oxidative stress-related metabolic diseases. Antioxidants (Basel). 2023;12(6):1290. doi: 10.3390/antiox12061290.
  • Kabłak-Ziembicka A, Badacz R, Przewłocki T. Clinical application of serum microRNAs in atherosclerotic coronary artery disease. J Clin Med. 2022;11(22):6849. doi: 10.3390/jcm11226849.
  • Sidorkiewicz M. Is microRNA-33 an appropriate target in the treatment of atherosclerosis. Nutrients. 2023;15(4):902. doi: 10.3390/nu15040902.
  • Nishino T, Horie T, Baba O, et al. SREBF1/MicroRNA-33b axis exhibits potent effect on unstable atherosclerotic plaque formation in vivo. Arterioscler Thromb Vasc Biol. 2018;38(10):2460–2473. doi: 10.1161/ATVBAHA.118.311409.
  • Márquez AB, van der Vorst EPC, Maas SL. Key chemokine pathways in atherosclerosis and their therapeutic potential. J Clin Med. 2021;10(17):3825. doi: 10.3390/jcm10173825.
  • Koyama S, Horie T, Nishino T, et al. Identification of differential roles of MicroRNA-33a and -33b during atherosclerosis progression with genetically modified mice. J Am Heart Assoc. 2019;8:e012609.
  • Ge Y, Wang Q, Qin X, et al. Tetrahedral framework nucleic acids connected with MicroRNA-126 mimics for applications in vascular inflammation, remodeling, and homeostasis. ACS Appl Mater Interfaces. 2022;14(17):19091–19103. doi: 10.1021/acsami.1c23869.
  • Gnanaguru G, Wagschal A, Oh J, et al. Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol Ther. 2021;29(7):2281–2293. doi: 10.1016/j.ymthe.2021.03.014.
  • Price NL, Zhang X, Fernández-Tussy P, et al. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc Natl Acad Sci USA. 2021;118(5):e2006478118. doi: 10.1073/pnas.2006478118.
  • Hu X, Liu Q, Guo X, et al. The role of remnant cholesterol beyond low-density lipoprotein cholesterol in diabetes mellitus. Cardiovasc Diabetol. 2022;21(1):117. doi: 10.1186/s12933-022-01554-0.
  • Price NL, Rotllan N, Canfrán-Duque A, et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep. 2017;21(5):1317–1330. doi: 10.1016/j.celrep.2017.10.023.
  • Hennessy EJ, van Solingen C, Scacalossi KR, et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat Metab. 2019;1(1):98–110. doi: 10.1038/s42255-018-0004-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.