28
Views
1
CrossRef citations to date
0
Altmetric
Original

1,5-Anhydro-D-glucitol—A novel type of sugar in the human organism

Pages 55-62 | Published online: 29 Mar 2011

References

  • Chodat R. La polygalite. Arch Sci Phys Mater 1888; 19: 590–91
  • Wiggins L. F. Anhydrides of the pentitols and hexitols. Adv Carbohydrate Chem 1950; 5: 191–228
  • Shinoda J., Sato S., Sato D. Über einen Bestandteil der Polygara tenuifolia. Berichte 1932; 65: 1219–23
  • Richtmyer N. K., Carr C. J., Hudson C. S. Two syntheses of polygalitol [1,5-anhydro-D-sorbitol]. J Am Chem Soc 1943; 65: 1477–8
  • Carr C. J., Krantz J. C. Sugar alcohols XII. The fate of polygalitol and mannitol in the animal body. J Biol Chem 1938; 124: 221–7
  • Dozois K. P., Carr C. J., Krantz J. C., Jr, Hachtel F., Beck F. F. Sugar alcohols VI. The utilization of sugar alcohols and their anhydrides by various microorganisms. J Bacteriol 1936; 32: 499–503
  • Plouvier V. Sur la recherche des polyalcools et des heterosides cyanogenetiques chez quelques Proteacees. C R Acad Sc 1964; 259: 665–8
  • Boeyens J. CA, Marais J. LCPerold G. W. The occurrence, conformation and crystal structure of 1,5-anhydro-D-glucitol in Protea spp. Phytochem 1983; 22: 1959–60
  • Bock K., Faurschou La Cour N., Rosendal Jensen S., Juhl Nielsen B. The structure of acertannin. Phytochem 1980; 19: 2033
  • Takiura K., Yamamoto M., Murata H., Takai H., Honda S., Yuki H. Studies on oligosaccharides. XIII. Oligosaccharides in Polygala senega and structures of glycosyl-1,5-anhydro-D-glucitols. Yakugaku Zasshi 1974; 94: 998–1003
  • Nakamura T., Naito A., Takahashi Y., Akanuma H. Oxidation of 1,5-anhydro-D-glucitol to 1,5-anhydro-D-fructose catalyzed by an enzyme from bacterial membranes. J Biochem 1986; 99: 607–13
  • Pitkänen E. Occurrence of 1,5-anhydroglucitol in human cerebrospinal fluid. Clin Chim Acta 1973; 48: 159–66
  • Smith S. L., Novotny M., Weber E. L. Gas-chromatographic determination of polyol profiles in cerebrospinal fluid. Clin Chem 1978; 24: 545–8
  • Servo C., Pitkänen E. Variation in polyol levels in cerebrospinal fluid and serum in diabetic patients. Diabetologia 1975; 11: 575–80
  • Akanuma H., Ogawa K., Lee Y-S, Akanuma Y. Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients. J Biochem 1981; 90: 157–62
  • Yoshioka S., Saitoh S., Fujisawa T., Fujimori A., Takatani O., Funabashi M. Identification and metabolic implication of 1-deoxyglucose [1,5-anhydroglucitol] in human plasma. Clin Chem 1982; 28: 1283–6
  • Yoshioka S., Saitoh S., Imura M. Variations of plasma 1-deoxyglucose [1,5-anhydroglucitol] in streptozotocin-induced diabetic rats. J Japan Diab Soc 1982; 25: 1115–8
  • Pitkänen E., Pitkänen O. The elimination of 1,5-anhydroglucitol administered to rats. Experientia 1984; 40: 463–5
  • Kametani S., Hashimoto Y., Yamanouchi T., Akanuma Y., Akanuma H. Reduced renal reabsorption of 1,5-anhydro-D-glucitol in diabetic rats and mice. J Biochem 1987; 102: 1599–607
  • Aoyagi T., Akanuma H., Wada T., Sakaguchi T., Kobayashi T., Umezawa H. Changes in relationship between blood glucose level and plasma 1,5-anhydroglucitol level in KK mice. Biochem Int 1989; 18: 599–603
  • Que L., Jr, Gray G. R. 13C Nuclear magnetic resonance spectra and the tautomeric equilibria of ketohexoses in solution. Biochem 1974; 13: 146–53
  • Richtmyer N. K., Hudson C. S. The ring structure of polygalitol. J Am Chem Soc 1943; 65: 64–7
  • Pitkänen E., Purokoski S., Lajunen K., Miettinen U. Identification of 1,5-anhydroglucitol in thin-layer chromatograms. Scand J Clin Lab Invest 1980; 40: 95–8
  • Crane R. K. Intestinal absorption of sugars. Physiol Reviews 1960; 40: 789–825
  • Crane R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc 1962; 21: 891–5
  • GrÜneberg A., Komor E. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Biochim Biophys Acta 1976; 448: 133–42
  • Bamett J. EG, Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J 1973; 131: 211–21
  • Kahlenberg A., Dolansky D. Structural requirements of D-glucose for its binding to isolated human erythrocyte membranes. Can J Biochem 1972; 50: 638–43
  • LeFevre P. G. Imine-bonding in membrane transport of monosaccharides: invalidity of kinetic evidence. Science 1967; 158: 274–5
  • Evans D. R., White B. C., Brown R. K. Evidence against the involvement of the carbonyl group in the glucose transport mechanism of human erythrocytes. Biochim Biophys Acta 1969; 173: 569–72
  • Yamanouchi T., Akanuma H., Takaku F., Akanuma Y. Marked depletion of plasma 1,5-anhydroglucitol, a major polyol, in streptozotocin-induced diabetes in rats and the effect of insulin treatment. Diabetes 1986; 35: 204–9
  • Crane R. K., Field R. A., Cori C. F. Studies of tissue permeability. I. The penetration of sugars into the Ehrlich ascites tumor cells. J Biol Chem 1957; 224: 649–62
  • Suzuki M., Akanuma H., Akanuma Y. Transport of 1,5-anhydro-D-glucitol across plasma membranes in rat hepatoma cells. J Biochem 1988; 104: 956–59
  • Rees W. D., Holman G. D. Hydrogen bonding requirements for the insulin-sensitive sugar transport system of rat adipocytes. Biochim Biophys Acta 1981; 646: 251–60
  • Pitkänen E. The serum protein pattern and the urinary polyol excretion in diabetic and in uremic patients. Clin Chim Acta 1972; 38: 221–30
  • Akanuma Y., Morita M., Fukuzawa N., Yamanouchi T., Akanuma H. Urinary excretion of 1,5-anhydro-D-glucitol accompanying glucose excretion in diabetic patients. Diabetologia 1988; 31: 831–5
  • Ullrich K. J., Rumrich G., Klöss S. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. PflÜgers Arch 1974; 351: 35–48
  • Silverman M. Glucose reabsorption in the kidney. Can J Physiol Pharmacol 1981; 59: 209–24
  • Samarzija I., Hinton B. T., Frömter E. Electrophysiological analysis of rat renal sugar and amino acid transport II. Dependence of various transport parameters and inhibitors. PflÜgers Arch 1982; 393: 190–7
  • Ullrich K. J. Polarity of the proximal tubular cell: comparison of luminal and contraluminal transport systems for hexoses, dicarboxylates and sulphate. Endocrine regulation of electrolyte balance, F. KrÜck, K. Thurau. Springer-Verlag, Berlin Heidelberg, New York 1986; 28–35
  • Kleinzeller A., McAvoy E. M., McKibbin R. D. Active renal hexose transport. Structural requirements. Biochim Biophys Acta 1980; 600: 513–29
  • Pitkänen E. Serum 1,5-anhydroglucitol in normal subjects and in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest 1982; 42: 445–8
  • Yamanouchi T., Akanuma H., Asano T., Konishi C., Akaoka I., Akanuma Y. Reduction and recovery of plasma 1,5-anhydro-D-glucitol level in diabetes mellitus. Diabetes 1987; 36: 709–15
  • Yamanouchi T., Akanuma H., Nakamura T., Akaoka I., Akanuma Y. Reduction of plasma 1,5-anhydroglucitol (1-deoxyglucose) concentration in diabetic patients. Diabetologia 1988; 31: 41–5
  • Yoshioka S., Saitoh S., Seki S., Seki K. Concentrations of non-glucose polyols in serum and cerebrospinal fluid from apparently healthy adults and children. Clin Chem 1984; 30: 188–91
  • Pitkänen E., Pitkänen O. Plasma 1,5-anhydroglucitol in experimental galactosaemia in the rat. Experientia 1990; 46: 85–7
  • Yoshioka S., Saitoh S., Negishi C., Fujisawa T., Fujimori A., Takatani O., Imura M., Funabashi M. Variations of 1-deoxyglucose (1,5-anhydroglucitol) content in plasma from patients with insulin-dependent diabetes mellitus. Clin Chem 1983; 29: 1396–8
  • Pitkänen E. Serum 1,5-anhydroglucitol concentration in diabetic patients receiving a continuous subcutaneous infusion of insulin. Clin Chem 1984; 30: 171–2
  • Yamanouchi T., Minoda S., Yabuuchi M., Akanuma Y., Akanuma H., Miyashita H., Akaoka I. Plasma 1,5-anhydro-D-glucitol as new clinical marker of glycemic control in NIDDM patients. Diabetes 1989; 38: 723–9
  • Yoshioka S., Saitoh S., Takatani O., Kosano H., Funabashi M. A possibility of increased utilization of 1-deoxyglucose (1,5-anhydroglucitol) in streptozotocin-induced diabetic rats. J Natl Def Med Coll 1984; 9: 90–3
  • Niwa T., Yamamoto N., Maeda K., Yamada K. Gas chromatographic-mass spectrometric analysis of polyols in urine and serum of uremic patients. J Chromatogr 1983; 277: 25–39
  • Lajunen K., Purokoski S., Pitkänen E. Qualitative thin-layer chromatographic separation of 1,5-anhydroglucitol in the presence of other carbohydrates on silica gel impregnated with borate buffer. J Chromatogr 1980; 187: 455–7
  • Smith I. Sugars. Chromatographic and electrophoretic techniques, I. Smith. William Heinemann Medical Books LTD, London 1963; 246–60
  • Ness R. K., Fletcher H. G., Hudson C. S. The reduction of acetylated glycopyranosyl bromides to 1,5-anhydroglycitols with lithium aluminum hydride. 1,5-anhydro-L-rhamnitol. J Am Chem Soc 1950; 72: 4547–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.