21
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Long-Lasting Recall Response of CD4 and CD8 8ß T Cells, but not ?d T Cells, to Heat Shock Proteins of Francisella tularensis

Pages 145-152 | Published online: 08 Jul 2009

References

  • Hahn H, Kaufmann S. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis 1981; 3: 1221–50.
  • von Koenig C, Finger H, Hof H. Failure of killed Listeria monocytogenes vaccine to produce protective immunity. Nature 1982; 20: 233–4.
  • Gotschlich E, Goldschneider I, Artenstein M. Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J Exp Med 1969; 129: 1385–95.
  • Austrian R, Douglas R, Schifman G, Coetzee A, Koornhof H, Hayden-Smith S, et al. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Physicians 1976; 89: 184–94.
  • Andersen P. Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand J Immunol 1997; 45: 115–31.
  • Harty J, Bevan M. CD8 + T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med 1992; 175: 1531–8.
  • Tärnvik A. Nature of protective immunity to Francisella tularensis. Rev Infect Dis 1989; 11: 440–51.
  • Sandström G, Tärnvik A, Wolf-Watz H. Immunospecific T-lymphocyte stimulation by membrane proteins from Francisella tularensis. J Clin Microbiol 1987; 25: 641–4.
  • Sjöstedt A, Eriksson M, Sandström G, Tärnvik A. Various membrane proteins of Francisella tularensis induce interferongamma production in both CD4+ and CD8+ T cells of primed humans. Immunology 1992; 76: 584–92.
  • Surcel HM, Sarvas M, Helander IM, Herva E. Membrane proteins of Francisella tularensis LVS differ in ability to induce proliferation of lymphocytes from tularemia-vaccinated individuals. Microb Pathog 1989; 7: 411–9.
  • Surcel HM. Diversity of Francisella tularensis antigens recognized by human T lymphocytes. Infect Immun 1990; 58: 2664–8.
  • Sjöstedt A, Sandström G, Tärnvik A, Jaurin B. Nucleotide sequence and T cell epitopes of a membrane protein of Francisella tularensis. J Immunol 1990; 145: 311–7.
  • Sjöstedt A, Sandström G, Tärnvik A, Jaurin B. Molecular cloning and expression of a T cell stimulating membrane protein of Francisella tularensis. Microb Pathog 1989; 6: 403–14.
  • Tärnvik A, Eriksson M, Sandström G, Sjöstedt A. Francisella tularensis—a model for studies of the immune response to intracellular bacteria in man. Immunology 1992; 76: 349–54.
  • Golovliov I, Ericsson M, Åkerblom L, Sandström G, Tärnvik A, Sjöstedt A. Adjuvanticity of ISCOMs incorporating a T cell-reactive lipoprotein of the facultative intracellular pathogen Francisella tularensis. Vaccine 1995; 13: 261–7.
  • Sjöstedt A, Sandström G, Tärnvik A. Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect Immun 1992; 60: 2855–62.
  • Ericsson M, Tärnvik A, Kuoppa K, Sandström G, Sjöstedt A. Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect Immun 1994; 62: 178–83.
  • Ericsson M, Golovliov I, Sandström G, Tärnvik A, Sjöstedt A. Characterization of the nucleotide sequence of the groE operon encoding heat shock proteins chaperone-60 and -10 of Francisella tularensis and determination of the T cell response to the proteins in individuals vaccinated with F. tularensis. Infect Immun 1997; 65: 1824–9.
  • Fisch P, Malkovsky M, Kovats S, Sturm E, Braakmann E, Klein B, et al. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 1990; 250: 1269–71.
  • Russo DM, Armitage RJ, Barral-Netto M, Barral A, Grabstein KH, Reed SG. Antigen-reactive gamma delta T cells in human leishmaniasis. J Immunol 1993; 151: 3712–8.
  • Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel PM. Human peripheral ‘‘gamma’’ ‘‘delta’’ T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 1993; 150: 2046–55.
  • Zuber M, Hoover TA, Dertzbaugh MT, Court DL. Analysis of the DnaK molecular chaperone system of Francisella tularensis. Gene 1995; 164: 149–52.
  • Chamberlain RE. Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 1965; 13: 232–5.
  • Lee C, Levin A, Branton D. Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 1987; 166: 308–12.
  • Ericsson M, Sandström G, Sjöstedt A, Tärnvik A. Persistence of cell-mediated immunity and decline of humoral immunity to the intracellular bacterium Francisella tularensis 25 years after natural infection. J Infect Dis 1994; 170: 110–4.
  • Sjöstedt A, Sandström G, Tärnvik A. Several membrane polypeptides of the live vaccine strain Francisella tularensis LVS stimulate T cells from naturally infected individuals. J Clin Microbiol 1990; 28: 43–8.
  • Wesch D, Marx S, Kabelitz D. Comparative analysis of αβ and γδ T cell activation by Mycobacterium tuberculosis and isopentenyl pyrophosphate. Eur J Immunol 1997; 27: 952–6.
  • Haregewoin A, Soman G, Hom RC, Finberg RW. Human γδ + T cells respond to mycobacterial heat-shock protein. Nature 1989; 340: 309–12.
  • Sturm E, Braakman E, Fisch P, Vreugdenhil R, Sondel P, Bolhuis R. Human V gamma 9-V delta 2 T cell receptor-gamma delta lymphocytes show specificity to Daudi Burkitt’s lymphoma cells. J Immunol 1990; 145: 3202–8.
  • Inaba K, Young J, Steinman R. Direct activation of CD8 + cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–94.
  • Jin I, Shih W-K, Berkower I. Human T cell response to the surface antigen of hepatitis B virus (HBsAg). Endosomal and nonendosomal processing pathways are accessible to both endogenous and exogenous antigen. J Exp Med 1988; 168: 293–306.
  • Germain N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994; 76: 287–9.
  • Rock K, Gamble S, Rothstein L. Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science 1990; 249: 918–21.
  • Born W, Hall L, Dallas A, Boymel J, Shinnick T, Young D, et al. Recognition of a peptide antigen by heat shock-reactive γδ T lymphocytes. Science 1990; 249: 67–9.
  • O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK. Stimulation of a major subset of lymphocytes expressing T cell receptor δ by an antigen derived from Mycobacterium tuberculosis. Cell 1989; 57: 667–74.
  • Holoshitz JFK, Coligan J, DeBruyn J, Strober S. Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 1989; 339: 226–9.
  • Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SHE. A large fraction of human peripheral blood γδ + T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 1990; 171: 667–79.
  • Kim H, Nelson E, Calyberger C, Sanjanwala M, Sklar J, Krensky A. γδ T cells recognition of tumor Ig peptide. J Immunol 1989; 154: 1614–23.
  • Rajagopalan S, Zordan T, Tsokos G, Datta S. Pathogenic anti-DNA antibody-producing T helper cell lines from patients with active lupus nephritis: isolation of CD4–CD8– T helper cell lines that express the gamma delta T cell antigen receptor. Proc Natl Acad Sci USA 1990; 87: 7020–4.
  • Laad AD, Thomas ML, Fakih AR, Chiplunkar SV. Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 1999; 80: 709–14.
  • Zhao X, Wei Y, Kariya Y, Teshigawara K, Uchida A. Accumulation of γδ T cells in human dysgerminoma and seminoma: role in autologous tumor killing and granuloma formation. Immunol Invest 1995; 24: 607–18.
  • Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A. Induction of autologous tumor killing by heat treatment of fresh human tumor cells: involvement of γδ T cells and heat shock protein 70. Cancer Res 1996; 56: 607–18.
  • Poquet Y, Kroca M, Halary F, Stenmark S, Peyrat MA, Bonneville M, et al. Expansion of Vγ9/Vδ2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect Immun 1998; 66: 2107–14.
  • Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 1994; 264: 267–70.
  • Kabelitz D, Wesch D, Hinz T. γδ T cells, their T cell receptor usage and role in human diseases. Springer Semin Immunopathol 1999; 21: 55–75.
  • Forsman M, Sandström G, Sjöstedt A. Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 1994; 44: 38–46.
  • Burke DS. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis 1977; 135: 55–60.
  • Hou S, Hyland L, Ryan K, Portner A, Doherty P. Virus-specific CD8 + T cell memory determined by clonal burst size. Nature 1994; 369: 652–4.
  • Lau LL, Jamieson BD, Somasundaram T, Ahmed R. Cytotoxic T-cell memory without antigen. Nature 1994; 369: 64852.
  • Mullbacher A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med 1994; 179: 317–21.
  • Murali-Krishna K, Altman JD, Suresh M, Sourdive DJD, Zajac AJ, Miller JD, et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8: 177–87.
  • Demkovicz W, Littaua R, Wang J, Ennis F. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J Virol 1996; 70: 2627–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.