7
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cytolytic T Cells in the Immune Response to Mycobacterium tuberculosis

Pages 26-30 | Published online: 08 Jul 2009

  • Tsukaguchi K, Balaji KN, Boom WH. CD4 + alphabeta T cell and gamma delta T cell responses to Mycobacterium tuberculosis. Similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J Immunol 1995; 154: 1786–96.
  • Dieli FM, Troye-Blomberg J, Ivanyi JJ, Fournie M, Bonneville M, Peyrat A, et al. Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 2000; 30: 1512–9.
  • Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 1989; 341: 447–50.
  • Porcelli S, Morita CT, Brenner MB. CD1b restricts the response of human CD4–8-T lymphocytes to a microbial antigen. Nature 1992; 360: 593–7.
  • Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, et al. CD1-restricted T cell recognition of microbial lipoglycan antigens [see comments]. Science 1995; 269: 227–30.
  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278: 1626–9.
  • Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998; 188: 1529–34.
  • Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 1992; 89: 12013–7.
  • Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB. Vaccination against tuberculosis by DNA injection. Nat Med 1996; 2: 888–92.
  • Tascon RE, Ragno S, Lowrie DB, Colston MJ. Immunostimulatory bacterial DNA sequences activate dendritic cells and promote priming and differentiation of CD8 + T cells. Immunology 2000; 99: 1–7.
  • Gong J, Stenger S, Zack JA, Jones BE, Bristol GC, Modlin RL, et al. Isolation ofmycobacterium-reactiveCD1-restrictedT cells from patients with human immunodeficiency virus infection. J Clin Invest 1998; 101: 383–9.
  • Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, et al. Human cytolytic and interferon gamma-secreting CD8 + T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1998; 95: 270–5.
  • Lewinsohn DM, Alderson MR, Briden AL, Riddell SR, Reed SG, Grabstein KH. Characterization of human CD8 + T cells reactive with Mycobacterium tuberculosis-infected antigen-presenting cells. J Exp Med 1998; 187: 1633–40.
  • Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8 + CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol 2000; 165: 353–63.
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178: 2249–54.
  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178: 2243–7.
  • Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335: 1941–9.
  • Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 1996; 335: 1956–61.
  • Feng CG, Bean AG, Hooi H, Briscoe H, Britton WJ. Increase in gamma interferon-secreting CD8( + ), as well as CD4( + ), T cells in lungs following aerosol infection with Mycobacterium tuberculosis. Infect Immun 1999; 67: 3242–7.
  • Serbina NV, Flynn JL. Early emergence of CD8( + ) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 1999; 67: 3980–8.
  • Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science 1997; 276: 1684–7.
  • Lewinsohn DM, Bement TT, Xu J, Lynch DH, Grabstein KH, Reed SG, et al. Human purified protein derivative-specific CD4 + T cells use both CD95-dependent and CD95-independent cytolytic mechanisms. J Immunol 1998; 160: 2374–9.
  • Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 1998; 160: 5448–54.
  • Molloy A, LaochumroonvorapongP, Kaplan G. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J Exp Med 1994; 180: 1499–1509.
  • Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 1997; 7: 433–44.
  • Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR. Cutting edge: purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 1999; 163: 558–67.
  • Laochumroonvorapong P, Paul S, Elkon KB, Kaplan G. H2O2 induces monocyte apoptosis and reduces viability of Mycobacterium avium-M. intracellulare within cultured human monocytes. Infect Immun 1996; 64: 452–9.
  • Santucci MB, Amicosante M, Cicconi R, Montesano C, Casarini M, Giosue S, et al. Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages: early membrane modifications and intracellular mycobacterial viability. J Infect Dis 2000; 181: 1506–9.
  • Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 2000; 164: 2016–20.
  • Thoma-Uszynski S, Stenger S, Modlin RLM. CTL-mediated killing of intracellular Mycobacterium tuberculosis is independent of target cell nuclear apoptosis. J Immunol 2000; 165: 5773–9.
  • Levitz SM, Mathews HL, Murphy JW. Direct antimicrobial activity of T cells. Immunol Today 1995; 16: 387–91.
  • Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–30.
  • Lowin B, Hahne M, Mattmann C, Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–2.
  • Berke G. Killing mechanisms of cytotoxic lymphocytes. Curr Opin Hematol 1997; 4: 32–40.
  • LaochumroonvorapongP, Wang J, Liu CC, Ye W, Moreira AL, Elkon KB, et al. Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect Immun 1997; 65: 127–32.
  • Cooper AM, D’Souza C, Frank AA, Orme IM. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect Immun 1997; 65: 1317–20.
  • Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci USA 2000; 97: 4204–8.
  • Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282: 121–5.
  • Pena SV, Hanson DA, Carr BA, Goralski TJ, Krensky AM. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. J Immunol 1997; 158: 2680–8.
  • Manning WC, O’Farrell S, Goralski TJ, Krensky AM. Genomic structure and alternative splicing of 519, a gene expressed late after T cell activation. J Immunol 1992; 148: 4036–42.
  • Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Sillard R, et al. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J 1995; 14: 1615–25.
  • Leippe M, Andra J, Nickel R, Tannich E, Muller-Eberhard HJ. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol Microbiol 1994; 14: 895–904.
  • Pena SV, Krensky AM. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin Immunol 1997; 9: 117–25.
  • Vaccaro AM, Salvioli R, Tatti M, Ciaffoni F. Saposins and their interaction with lipids. Neurochem Res 1999; 24: 307–14.
  • Hanson DA, Kaspar AA, Poulain FR, Krensky AM. Biosynthesis of granulysin, a novel cytolytic molecule. Mol Immunol 1999; 36: 413–22.
  • Mackewicz CE, Ridha S, Levy JA. HIV virions and HIV replication are unaffected by granulysin [letter]. AIDS 2000; 14: 328–30.
  • Liepinsh E, Andersson M, Ruysschaert JM, Otting G. Saposin fold revealed by the NMR structure of NK-lysin [letter]. Nat Struct Biol 1997; 4: 793–5.
  • Dandekar T, Leippe M. Molecular modeling of amoebapore and NK-lysin: a four-alpha-helix bundle motif of cytolytic peptides from distantly related organisms. Fold Des 1997; 2: 47–52.
  • Andreu D, Carreno C, Linde C, Boman HG, Andersson M. Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem J 1999; 344 Pt 3: 845–9.
  • Wang Z, Choice E, Kaspar A, Hanson D, Okada S, Lyu SC, et al. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J Immunol 2000; 165: 1486–90.
  • Mincheva-Nilsson L, Nagaeva O, Sundqvist KG, Hammarstrom ML, Hammarstrom S, Baranov V. gammadelta T cells of human early pregnancy decidua: evidence for cytotoxic potency. Int Immunol 2000; 12 : 585–96.
  • Soccal PM, Doyle RL, Jani A, Chang S, Akindipe OA, Poirier C, et al. Quantification of cytotoxic T-cell gene transcripts in human lung transplantation. Transplantation 2000; 69: 1923–7.
  • Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, et al. Self-recognition of CD 1 by gamma/delta T cells: implications for innate immunity [see comments]. J Exp Med 2000; 191: 937–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.