Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 20
455
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Novel 1,2,3-Triazole-dihydro[3,2-c]chromenones as Acetylcholinesterase Inhibitors

, , , , , & show all
Pages 2311-2318 | Received 21 Apr 2015, Published online: 11 Sep 2015

REFERENCES

  • (a) Akselsen, Ø. W.; Odlo, K.; Cheng, J.-J.; Maccari, G.; Botta, M.; Hansen, T. V. Synthesis, biological evaluation, and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg. Med. Chem. 2012, 20, 234–242; (b) Ostrowski, T.; Januszczyk, P.; Cieslak, M.; Kazmierczak-Baranska, J.; Nawrot, B.; Bartoszak-Adamska, E.; Zeidler, J. 5-Ethynyl-1-β-d-ribofuranosyl-1H-[1,2,3]triazole-4-carboxylic acid amide (ETCAR) and its analogues: Synthesis and cytotoxic properties. Bioorg. Med. Chem. 2011, 19, 4386–4398.
  • Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-Triazole-[2′,5′-bis-o-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole2″,2″-dioxide) (TSAO) analogues: Synthesis and anti-HIV-1 activity. J. Med. Chem. 1994, 37, 4185–4194.
  • Cheng, H.; Wan, J.; Lin, M.-I.; Liu, Y.; Lu, X.; Liu, J.; Xu, Y.; Chen, J.; Tu, Z.; Cheng, Y.-S. E.; Ding, K. Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents targeting virus nucleoprotein. J. Med. Chem. 2012, 55, 2144–2153.
  • Jordão, A. K.; Ferreira, V. F.; Lima, E. S.; de Souza, M. C. B. V.; Carlos, E. C. L.; Castro, H. C.; Geraldo, R. B.; Rodrigues, C. R.; Almeida, M. C. B.; Cunha, A. C. Synthesis, antiplatelet, and in silico evaluations of novel N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg. Med. Chem. 2009, 17, 3713–3719.
  • Boechat, N.; Ferreira, V. F.; Ferreira, S. B.; Ferreira, M. de L. G.; da Silva, F. de C.; Bastos, M. M.; Costa, M. dos S.; Lourenço, M. C. S.; Pinto, A. C.; Krettli, A. U.; Aguiar, A. C.; Teixeira, B. M.; da Silva, N. V.; Martins, P. R. C.; Bezerra, F. A. F. M.; Camilo, A. L. S.; da Silva, G. P.; Costa, C. C. P. Novel 1,2,3-triazole derivatives for use against mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem. 2011, 54, 5988–5999.
  • Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radić, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem., Int. Ed. Engl. 2002, 41, 1053–1057.
  • Ranatunga, S.; Tang, C.-H. A.; Kang, C. W.; Kriss, C. L.; Kloppenburg, B. J.; Hu, C.-C. A.; Valle, J. R. D. Synthesis of novel tricyclic chromenone-based inhibitors of IRE-1 RNase activity. J. Med. Chem. 2014, 57, 4289–4301.
  • Nussbaumer, P.; Lehr, P.; Billich, A. 2-Substituted 4-(thio)chromenone 6-O-sulfamates: potent inhibitors of human steroid sulfatase. J. Med. Chem. 2002, 45, 4310–4320.
  • (a) Cravotto, G.; Nano, G. M.; Palmisano, G.; Tagliapietra, S. An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron Asymmetry 2001, 12, 707–709; (b) Manolov, I.; Danchev, N. D. Synthesis, toxicological, and pharmacological assessment of some 4-hydroxycoumarin derivatives. Eur. J. Med. Chem. 1995, 30, 531–535; (c) Choure, R.; Pitre, K. S. Structural modification of coumarin for its increased anticoagulation potency. Can. J. Chem., Eng. Technol. 2010, 1, 7–15.
  • (a) Schio, L.; Chatreaux, F.; Klich, M. Tosylates in palladium-catalysed coupling reactions. Application to the synthesis of arylcoumarin inhibitors of gyrase B. Tetrahedron Lett. 2000, 41, 1543–1547; (b) Lad, H. B.; Giri, R. R.; Brahmbhatt, D. I. An efficient synthesis of some new 3-bipyridinyl substituted coumarins as potent antimicrobial agents. Chin. Chem. Lett. 2013, 24, 227–229.
  • Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 2004, 10, 3797–3811.
  • Witaicenis, A.; Seito, L. N.; Chagas, A. S.; Junior, L. D. A.; Luchini, A. C.; Rodrigues-Orsi, P.; Cestari, S. H.; Stasi, L. C. D. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014, 21, 240–246.
  • (a) Mao, P. C.-M.; Mouscadet, J. F.; Leh, H.; Christian, A.; Hsu, L. Y. Chemical modification of coumarin dimer and HIV-1 integrase inhibitory activity. Chem. Pharm. Bull. 2002, 50, 1634–1637; (b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev. 2003, 23, 322–345; (c) Olomola, T. O.; Klein, R.; Mautsa, N.; Sayed, Y.; Kaye, P. T. Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg. Med. Chem. 2013, 21, 1964–1971.
  • (a) Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. 2012, 20, 1175–1180; (b) Karatas, M. O.; Alici, B.; Cakir, U.; Cetinkaya, E.; Demir, D.; Ergün, A.; Gençer, N.; Arslan, O. Synthesis and carbonic anhydrase inhibitory properties of novel coumarin derivatives. J. Enzyme Inhib. Med. Chem. 2013, 28, 299–304.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
  • Jiang, Y.; Kuang, C.; Yang, Q. The use of calcium carbide in the synthesis of 1-monosubstituted aryl 1,2,3-triazole via click chemistry. Synlett 2009, 3163–3166.
  • Kolarovič, A.; Schnürch, M.; Mihovilovic, M. D. Tandem catalysis: From alkynoic acids and aryl iodides to 1,2,3-triazoles in one pot. J. Org. Chem. 2011, 76, 2613–2618.
  • Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. Amphiphilic self-assembled polymeric copper catalyst to parts per million levels: Click chemistry. J. Am. Chem. Soc. 2012, 134, 9285–9286.
  • (a) Trkovnik, M.; Ivezic, Z. Syntheses of some new coumarin-quinolone carboxylic acids. J. Heterocycl. Chem. 2000, 37, 137–141; (b) Mashraqui, S. H.; Vashi, D.; Mistry, H. D. Efficient synthesis of 3‐substituted coumarins. Synth. Commun. 2004, 34, 3129–3134; (c) Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 3268–3270.
  • Potdar, M. M.; Mohile, S. S.; Salunkhe, M. M. Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett. 2001, 42, 9285–9287; (b) Santana, L.; González-Díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.; Orallo, F. Quantitative structure–activity relationship and complex network approach to monoamine oxidase A and B inhibitors. J. Med. Chem. 2008, 51, 6740–6751.
  • Mali, R. S.; Tilve, S. G. Useful synthesis of coumestans. Synth. Commun. 1990, 20, 1781–1791.
  • Mali, R. S.; Joshi, P. P. Useful syntheses of prenylated- and pyrano-3-arylcoumarins. Synth. Commun. 2001, 31, 2753–2767.
  • Madkour, H. M. F. Synthesis and reactions of some 3-cyano-4-methylcoumarins. Heterocycles 1993, 36, 947–959.
  • Pokhodylo, N. T.; Savka, R. D.; Obushak, M. D. Synthesis of 3,4-dihydro-2H-thiopyrans and thiopyrano[3,4-c]chromenes having a 1,2,3-triazole substituent by using thionylation-hetero-Diels–Alder domino reaction. Chem. Heterocycl. Compd. 2014, 50, 544–549.
  • (a) Alizadeh, B. H.; Saeedi, M.; Dehghan, G.; Foroumadi, A.; Shafiee, A. Synthesis of some novel pyrano[2,3-f]chromenone derivatives. J. Iranian Chem. Soc. 2015, 12, 605–612; (b) Mahdavi, M.; Foroughi, N.; Saeedi, M.; Karimi, M.; Alinezhad, H.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Synthesis of novel benzo[6,7][1,4]oxazepino[4,5-a]quinazolinone derivatives via transition-metal-free intramolecular hydroamination. Synlett 2014, 25, 385–388; (c) Asadi, M.; Masoomi, S.; Ebrahimi, S. M.; Mahdavi, M.; Saeedi, M.; Ranjbar, P. R.; Shafiee, A.; Foroumadi, A. Convenient and sequential one-pot route for synthesis of 2-thioxoquinazolinone and quinazolinobenzothiazinedione derivatives. Monatsh. Chem. 2014, 145, 497–504.
  • (a) Mahdavi, M.; Bialam, M.; Saeedi, M.; Jafarpour, F.; Foroumadi, A.; Shafiee, A. Efficient synthesis of 2-methylenethiazolo[2,3-b]quinazolinone derivatives. Synlett 2015, 26, 173–176; (b) Nahavandian, S.; Allameh, S.; Saeedi, M.; Ansari, S.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Novel 1,2,3,4-tetrahydroquinazolinones via reaction of 2-amino-N-substituted benzamides and dimethyl acetylenedicarboxylate. Helv. Chim. Acta 2015, 98, 1028–1033; (c) Saeedi, M.; Goli, F.; Mahdavi, M.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Efficient synthesis of novel thiazol-2-ylidene-amides using carbonylthiourea building blocks. J. Heterocycl. Chem. 2015, 52, 1150–1153.
  • (a) Mohammadi-Khanaposhtani, M.; Saeedi, M.; Zafarghandi, N. S.; Mahdavi, M.; Sabourian, R.; Razkenari, E. K.; Alinezhad, H.; Khanavi, M.; Shafiee, A.; Foroumadi, A.; Akbarzadeh, T. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation and docking study of acridone linked to 1,2,3-triazole derivatives. Eur. J. Med. Chem. 2015, 92, 799–806; (b) Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Saeedi, M.; Sabourian, R.; Safavi, M.; Khanavi, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, biological evaluation, and docking study of acetylcholinesterase inhibitors: New acridone-1,2,4-oxadiazole-1,2,3-triazole hybrids. Chem. Biol. Drug. Des. In press. doi:10.1111/cbdd.12609; (c) Mohammadi-Khanaposhtani, M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M.; Saeedi, M.; Ardestani, S. K.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Mol. Divers. In press. doi:10.1007/s11030-015-9616-0.
  • (a) Rayatzadeh, A.; Saeedi, M.; Mahdavi, M.; Rezaei, Z.; Sabourian, R.; Mosslemin, M. H.; Akbarzadeh, T.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of novel oxoisoindolines derivatives as acetylcholinesterase inhibitors. Monatsh. Chem. 2015, 146, 637–643; (b) Rahmani-Nezhad, S.; Khosravani, L.; Saeedi, M.; Divsalar, K.; Firoozpour, L.; Pourshojaei, Y.; Sarrafi, Y.; Nadri, H.; Moradi, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and evaluation of coumarin-resveratol hybrids as 15-lipoxygenase inhibitors. Synth. Commun. 2015, 45, 751–759; (c) Esmati, N.; Foroughian, M.; Saeedi, M.; Mahdavi, M.; Khoshneviszadeh, M.; Firuzi, O.; Tanideh, N.; Edraki, N.; Miri, R.; Shafiee, A.; Foroumadi, A. Synthesis and cytotoxic activity of some novel dihyrobenzo[h]pyrano[3,2-c]chromene derivatives. J. Heterocycl. Chem. 2015, 52, 97–104.
  • Berchtold, N. C.; Cotman, C. W. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging 1998, 19, 173–189.
  • Mao, F.; Huang, L.; Luo, Z. H.; Liu, A. Q.; Lu, C. J.; Xie, Z. Y.; Li, X. S. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg. Med. Chem. 2012, 20, 5884–5892.
  • Zhou, X.; Wang, X. B.; Wang, T.; Kong, L. Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg. Med. Chem. 2008, 16, 8011–8021.
  • Tang, H.; Zhao, H. T.; Zhong, S. M.; Wang, Z. Y.; Chen, Z. F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett. 2012, 22, 2257–2261.
  • Bolognesi, M. L.; Cavalli, A.; Valgimigli, L.; Bartolini, M.; Rosini, M.; Andrisano, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed drug design strategy: From a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J. Med. Chem. 2007, 50, 6446–6449.
  • Miyamae, Y.; Kurisu, M.; Murakami, K.; Han, J.; Isoda, H.; Irie, K.; Shigemori, H. Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein. Bioorg. Med. Chem. 2012, 20, 5844–5849.
  • Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol. 2003, 2, 539–547.
  • Ellman, G. L.; Courtney, K. D.; Andres Jr., V.; Feather-Stone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.