Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 24
687
Views
29
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Advances in 1,8-Naphthyridines Chemistry

, &
Pages 2765-2801 | Received 25 Jul 2015, Published online: 25 Sep 2015

REFERENCES

  • Allen, C. F. H. The naphthyridines. Chem. Rev. 1950, 47, 275–305.
  • Weiss, M. J.; Hauser, C. R. In Heterocyclic Compounds; R. C. Elder (Ed.); Wiley: New York, 1961; vol. 7, pp. 198–236.
  • Duffin, G. F. The quaternization of heterocyclic compounds. Adv. Heterocycl. Chem. 1964, 3, 1–56.
  • Campbell, N. In The Chemistry of Carbon Compounds; E. H. Rodd (Ed.); Elsevier: Amsterdam, 1959; vol. 4b, pp. 1035–1038.
  • Reissert, A. Ueber Di-(γ-amidopropyl) essigsäure (Diamino-1,7-heptan-methylsäure.4) und ihr inneres Condensationsproduct, das Octohydro-1,8-naphtyridin. Chem. Ber. 1893, 26, 2137–2144.
  • Bobrański, B.; Sucharda, E. Über eine Synthese des 1.5-Naphthyridins. Chem. Ber. 1927, 60, 1081–1084.
  • Koller, G. Über das 1.8-Naphthyridin. Chem. Ber. 1927, 60, 1918–1920.
  • Tan, R.; Taurins, A. A new synthesis of 1,7-naphthyridine. Tetrahedron Lett. 1966, 7, 1233–1237.
  • Litvinov, V. P.; Roman, S. V.; Dyachenko, V. D. Naphthyridines: Structure, physicochemical properties and general methods of synthesis. Russ. Chem. Rev. 2000, 69, 201–220.
  • Mason, S. F. The electronic spectra of N-heteroaromatic systems, part IX: n→(π-Transitions of polycyclic azines. J. Chem. Soc. 1962, 493–497.
  • Wait Jr., S. C.; Wesley, J. W. Azanaphthalenes, part I: Huckel orbital calculations. J. Mol. Spectroscopy 1966, 19, 25–33.
  • Armarego, W. L. F.; Barlin, G. B.; Spinner, E. The infra-red spectra of some diaza- and triaza-naphthalenes and of 1,4,5,8-tetraazanaphthalene. Spectrochim. Acta 1966, 22, 117–123.
  • Ikekawa, N. Studies on naphthyridines. IV. Infrared spectra of naphthyridines. Chem. Pharm. Bull. (Tokyo) 1958, 6, 404; Chem. Abstr. 1959, 53, 3227.
  • Skoda, W.; Bayzer, H. UV-spektrographische Untersuchungen an Derivaten des 1,8-Naphthyridins. Monatsh. Chem. 1958, 89, 5–14.
  • Paudler, W. W.; Kress, T. J. Ten π-electron nitrogen heterocyclic compounds, IX: The syntheses and nuclear magnetic resonance spectra of some methylnaphthyridines. J. Org. Chem., 1966, 31, 3055–3057.
  • Paudler, W. W.; Kress, T. J. Naphthyridine chemistry, VIII: The mass spectra of the 1,X-naphthyridines and some of their methyl derivatives. J. Heterocycl. Chem. 1967, 4, 547–554.
  • Adams, R.; Pachter, I. J. Ultraviolet spectra and structures of the pyrido[1,2-a]pyrimidones. J. Am. Chem. Soc. 1952, 74(21), 5491–5497.
  • Lappin, G. R. Cyclization of 2-aminopyridine derivatives, I: Substituted ethyl 2-pyridylaminomethylenemalonates. J. Am. Chem. Soc. 1948, 70(10), 3348–3350.
  • Adams, J. T.; Bradsher, C. K.; Breslow, D. S.; Amore, S. T.; Hauser, C. R. Synthesis of antimalarials, VI: Synthesis of certain 1,5- and 1,8-naphthyridine derivatives. J. Am. Chem. Soc. 1946, 68(7), 1317–1319.
  • Paudler, W. W.; Kress, T. J. The Skraup syntheses and NMR spectra of some methylnaphthyridines. J. Heterocycl. Chem. 1967, 4, 284–289.
  • Paudler, W. W.; Kress, T. J. Naphthyridine chemistry, V: One-step synthesis of 1,8-naphthyridines. J. Org. Chem. 1967, 32(3), 832–833.
  • Hauser, C. R.; Weiss, M. J. Cyclization of 2-aminopyridine derivatives to form 1,8-naphthyridines. J. Org. Chem. 1949, 14(3), 453–459.
  • Brown, E. V. 1,8-Naphthyridines, I: Derivatives of 2- and 4-methyl-1,8-naphthyridines. J. Org. Chem. 1965, 30(5), 1607–1610.
  • (a) Paudler, W. W.; Kress, T. J. The Naphthyridines; Academic Press Inc. Published by Elsevier Inc., 1970; Adv. Heterocycl. Chem. 1970, 11, 123–175; (b) Mekheimer, R. A.; Abdel Hameed, A. M.; Sadek, K. U. 1,8-Naphthyridines II: Synthesis of novel polyfunctionally substituted 1,8-naphthyridinones and their degradation to 6-aminopyridones. Arkivoc 2007, xiii, 269–281.
  • Hawes, E. M.; Wibberley, D. G. 1,8-Naphthyridines. J. Chem. Soc. C 1966, 315–321.
  • (a) Hawes, E. M.; Wibberley, D. G. 1,8-Naphthyridines, part II: Preparation and some reactions of 2-substituted derivatives. J. Chem. Soc. C 1967, 1564–1568: (b) Goswami, S.; Mukherjee, R.; Jana, S.; Maity, A. C.; Adak, A. K. Simple and efficient synthesis of 2,7-difunctionalized-1,8-naphthyridines. Molecules 2005, 10, 929–936.
  • Takata, T. Synthesis of methylpyridine and 1,8-naphthylidine derivatives. Bull. Chem. Soc. Japan 1962, 35, 1438–1443.
  • Besidsky, Y.; Luthman, K.; Claesson, A.; Fowler, C. J.; Csöregh, I.; Hacksell, U. Synthesis of perhydro-1,4-ethano-1,5-naphthyridine and perhydro-4,7-ethanopyrrolo[3,2-b]pyridine derivatives: Potential NK1-receptor antagonists. X-Ray molecular structures of (4aR,8S,8aR)-6-oxo-8-phenylperhydro-1,4-ethano-1,5-naphthyridine and (4aR,7R,8R,8aR)-7,8-diphenylperhydro-1,4-ethano-1,5-naphthyridine; J. Chem. Soc., Perkin Trans. 1 1995, 465–474.
  • Mikhalev, A. I.; Konshin, M. E. Research of naphthyridines. Chem. Heterocycl. Comp. 1977, 13, 1000–1003.
  • Ried, W.; Käppeler, W. Reaktionen mit cyclischen Enaminen, III1: N-Heterocyclen aus Cycloalkenylamin-Isocyanat- bzw. -Isothiocyanat-Addukten. Liebigs Ann. Chem. 1965, 688, 177–188.
  • Weir, M. R. S.; Hyne, J. B. Some base-catalyzed condensations of systems of the form R1R2C˭C(CN)2. Can. J. Chem. 1965, 43, 772–782.
  • Bock, H.; Van, T. T. H.; Schödel, H. Kristallstruktur von 1,8-Naphthyridinium-(1)-tetraphenylborat: Einebnung eines verzerrten Molekülskeletts durch Protonierung. Monatsh. Chem. 1996, 127, 391–396.
  • Rahman, A. M.; Kwon, Y.; Jahng, Y. Friedländer reactions of triacetylmethane: Unusual distribution of products. Heterocycles 2005, 65, 2777–2782.
  • Zhichkin, P.; Beer, C.; Rennells, W.; Fairfax, D. A one-pot method for the synthesis of naphthyridines via modified Friedlander reaction. Synlett 2006, 3, 379–382.
  • Sampathkumar, N.; Kumar, N. V.; Rajendran, S. P. A simple synthesis of dibenzo[b,g][1,8]naphthyridines. Synth. Commun. 2004, 34(11), 2019–2024.
  • Djurdjevic, S.; Leigh, D. A.; McNab, H.; Parsons, S.; Teobaldi, G.; Zerbetto, F. Extremely strong and readily accessible AAA−DDD triple hydrogen bond complexes. J. Am. Chem. Soc. 2007, 129(3), 476–477.
  • Blight, B. A.; Camara-Campos, A.; Djurdjevic, S.; Kaller, M.; Leigh, D. A.; McMillan, F. M.; McNab, H.; Slawin, A. M. Z. AAA−DDD triple hydrogen bond complexes. J. Am. Chem. Soc. 2009, 131(39), 14116–14122.
  • Ferrarini, P. L.; Calderone, V.; Cavallini, T.; Manera, C.; Saccomanni, G.; Pani, L.; Ruiu, S.; Gessa, G. L. Synthesis and biological evaluation of 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives as new ligands of cannabinoid receptors. Bioorg. Med. Chem. 2004, 12, 1921–1933.
  • Stern, E.; Muccioli, G. G.; Bosier, B.; Hamtiaux, L.; Millet, R.; Poupaert, J. H.; Hénichart, J.-P.; Depreux, P.; Goossens, J.-F.; Lambert, D. M. Pharmacomodulations around the 4-oxo-1,4-dihydroquinoline-3-carbox-amides, a class of potent CB2-selective cannabinoid receptor ligands: Consequences in receptor affinity and functionality. J. Med. Chem. 2007, 50(22), 5471–5484.
  • Wierenga, W.; Skulnick, H. I. General, efficient, one-step synthesis of beta-keto esters. J. Org. Chem. 1979, 44(2), 310–311.
  • Chu, D. T. W.; Fernandes, P. B.; Claiborne, A. K.; Pihuleac, E.; Nordeen, C. W.; Maleczka Jr., R. E.; Pernet, A. G. Synthesis and structure–activity relationships of novel arylfluoroquinolone antibacterial agents. J. Med. Chem. 1985, 28(11), 1558–1564.
  • Guay, D.; Boulet, L.; Friesen, R. W.; Girard, M.; Hamel, P.; Huang, Z.; Laliberté, F.; Laliberté, S.; Mancini, J. A.; Muise, E.; Pon, D.; Styhler, A. Optimization and structure–activity relationship of a series of 1-phenyl-1,8-naphthyridin-4-one-3-carboxamides: Identification of MK-0873, a potent and effective PDE4 inhibitor. Bioorg. Med. Chem. Lett. 2008, 18, 5554–5558.
  • Albaneze-Walker, J.; Murray, J. A.; Soheili, A.; Ceglia, S.; Springfield, S. A.; Bazaral, C.; Dormer, P. G.; Hughes, D. L. Practical application of new catalytic methods: A concise synthesis of a potent PDE IV inhibitor. Tetrahedron 2005, 61, 6330–6336.
  • Kuduk, S. D.; Di Marco, C. N.; Chang, R. K.; Ray, W. J.; Ma, L.; Wittmann, M.; Seager, M.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M. T. Heterocyclic fused pyridone carboxylic acid M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 19, 2533–2537.
  • National Committee for Clinical Laboratory Standards. Antimycobacterial susceptibility testing for M. tuberculosis: Proposed standard M24-T; National Committee for Clinical Laboratory Standards: Villanova, PA, 1995.
  • Dinakaran, M.; Senthil Kumar, P.; Yogeeswari, P.; Sriram, D. Antitubercular activities of novel benzothiazolo naphthyridone carboxylic acid derivatives endowed with high activity toward multi-drug-resistant tuberculosis. Biomed. Pharmacother. 2009, 63, 11–18.
  • Tyagi, S.; Nuermberger, E.; Yoshimatsu, T.; Williams, K.; Rosenthal, I.; Lounis, N.; Bishai, W.; Grosset, J. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother. 2005, 49, 2289–2293.
  • Tomita, K.; Tsuzuki, Y.; Shibamori, K.-i.; Tashima, M.; Kajikawa, F.; Sato, Y.; Kashimoto, S.; Chiba, K.; Hino, K. Synthesis and structure–activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents, part 1. J. Med. Chem. 2002, 45, 5564–5575.
  • Srivastava, S. K.; Jaggi, M.; Singh, A. T.; Madan, A.; Rani, N.; Vishnoi, M.; Agarwal, S. K.; Mukherjee, R.; Burman, A. C. Anticancer and anti-inflammatory activities of 1,8-naphthyridine-3-carboxamide derivatives. Bioorg. Med. Chem. Lett. 2007, 17, 6660–6664.
  • Kumar, V.; Jaggi, M.; Singh, A. T.; Madaan, A.; Sanna, V.; Singh, P.; Sharma, P. K.; Irchhaiya, R.; Burman, A. C. 1,8-Naphthyridine-3-carboxamide derivatives with anticancer and anti-inflammatory activity. Eur. J. Med. Chem. 2009, 44, 3356–3362.
  • Katritzky, A. R.; Munawar, M. A.; Kovacs, J.; Khelashvili, L. Synthesis of derivatives of antibiotics. Org. Biomol. Chem. 2009, 7, 2359–2362.
  • (a) Aboul-Fadl, T.; Bin-Jubair, F. A. S.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem. 2010, 45, 4578–4586; (b) Deeba, F.; Khan, M. A.; Zia-ur-Rehman, M.; Şahin, E.; Çaylak, N. N′-[(E)-Benzylidene]-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide. Acta Crystallogr. Sect. E. 2009, 65(12), o3152–o3153.
  • Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J. M. Synthesis, antimicrobial evaluation, and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives. Eur. J. Med. Chem. 2011, 46, 4089–4099.
  • Fadda, A. A.; El-Defrawy, A. M.; El-Hadidy, S. A. Synthesis, cytotoxicity activity, DFT molecular modeling studies, and quantitative structure–activity relationship of some novel 1, 8-naphthyridine derivatives. Am. J. Org. Chem. 2012, 2, 87–96.
  • Schwaebe, M. K.; Ryckman, D. M.; Nagasawa, J. Y.; Pierre, F.; Vialettes, A.; Haddach, M. Facile and efficient generation of quinolone amides from esters using aluminum chloride. Tetrahedron Lett. 2011, 52, 1096–1100.
  • Mogilaiah, K.; Chowdary, D. S.; Rao, R. B. Synthesis and antibacterial activity of pyrazole and 1,3,4-oxadiazole derivatives of 2-phenyl-1,8-naphthyridine. Indian J. Chem. Sect. B 2001, 40, 43–48.
  • Grover, G.; Kini, S. G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem. 2006, 41, 256–262.
  • Makosza, M.; Golinski, J.; Ostrowski, S.; Sahasrabudhe, A. B.; Rykowski, A. Reactions of organic anions, 177: Vicarious nucleophilic substitution of hydrogen, bisannulation, and competitive reactions of α-haloalkyl carbanions with bicyclic azaaromatic compounds. Chem. Ber. 1991, 124, 577–585.
  • Kulagowski, J. J.; Merck, Sharp, & Dohme, Ltd. Octahydronaphthyridine derivatives. US Patent 5700941 A1, 1997.
  • Rivera, N. R.; Xiao, Y.; Yasuda, N.; Merck & Co., Inc. Process and intermediates to a tetrahydro[1,8]naphthyridine. US Patent 6423845 B1, 2002.
  • Harris, J. K. Improvement in presses for baling. US Patent 38963 A1, 1863.
  • Chemocentryx, Inc. WO Patent 76644 A2, 2006.
  • Duggan, M. E.; Hartman, G. D.; Meissner, R. S.; Perkins, J. J.; Merck & Co., Inc. αv integrin receptor antagonists. US Patent 6410526 B1, 2002.
  • Wan, Y.; Niu, W.; Behof, W. J.; Wang, Y.; Boyle, P.; Gorman, C. B. Aminoisoquinolines as colorimetric Hg2+ msensors: The importance of molecular structure and sacrificial base. Tetrahedron 2009, 65, 4293–4297.
  • Spillmanist, H. Improvement in supporters and pessaries. US Patent 116368 A1, 2006.
  • Cardinaud, I.; Gueiffier, A.; Fauvelle, F.; Milhavet, J.-C.; Chapat, J.-P. Synthesis of original pyrrolonaphthyridines by 1,3-dipolar cycloaddition reactions of naphthyridinium dicyanomethylides with dimethyl acetylenedicarboxylate. Heterocycles 1993, 36, 1945–1949.
  • Khlebnikov, A. F.; Kostik, E. I.; Kopf, J.; Aleksandrov, E. V.; Kostikov, R. R. 1,3-Dipolar cyclic attachment of ilides from diazines and dichlorocarbene. Russ. J. Org. Chem. 1998, 34, 754–767.
  • Manlove, G. H.; Green, J. P. Improvement in corn harvesters. US Patent 58348 A1, 2008.
  • (a) Koller, G.; Kandler, E. Über das Dekahydro-1, 8-Naphthyridin und andere Naphthyridinabkömmlinge. Monatsh. Chem. 1931, 58, 213–237 (b) Czuba, W. Synthesis and reactions of naphthyridines. Chem. Heterocycl. Comp. 1979, 15, 1–13.
  • Paudler, W. W.; Kress, T. J. Naphthyridine chemistry X: Protonation and methylation of the 1,X-naphthyridines. J. Heterocycl. Chem. 1968, 5, 561–564.
  • Colonna, M. Action of sulphuryl chloride upon N-oxide of quinaldine. Boll. Sci. Fac. Chim. Ind. Bologna. 1941, 9, 82–87; Chem. Abstr. 1943, 37, 3097c.
  • Colonna, M.; Runti, C. Ricerche sugli N-ossidi aroma-tici. Sintesi di acido idrossamico ciclico deriva-to dell 1–8-naftiridina. Gazz. Chim. Ital. 1952, 82, 513–515; Chem. Abstr. 1954, 48, 680.
  • Choi, D. R.; Shin, J. H.; Yang, J.; Yoon, S. H.; Jung, Y. H. Syntheses and biological evaluation of new fluoroquinolone antibacterials containing chiral oxiimino pyrrolidine. Bioorg. Med. Chem. Lett. 2004, 14, 1273–1277.
  • Bonjoch, J.; Linares, A.; Guardià, M.; Bosch, J. A stereoselective synthesis of cis-4-acetonyl-1-benzyl-3-ethylpiperidine. Heterocycles 1987, 26, 2165–2174.
  • Almond, M. R.; Stimmel, J. B.; Thompson, E. A.; Loudon, G. M. Hofmann rearrangement under mildly acidic conditions using [I,I-bis(trifluoroacetoxy)] iodobenzene:cyclobutylamine hydrochloride from cyclobutanecarboxamide. Org. Synth. 1988, 66, 132.
  • Hong, C. Y.; Kim, Y. K.; Chang, J. H.; Kim, S. H.; Choi, H.; Nam, D. H.; Kim, Y. Z.; Kwak, J. H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: Synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem. 1997, 40, 3584–3593.
  • Huang, S.; Xie, R. G.; Tian, B. Z. Organic Synthesis Reagent Preparation Manual; Sichuan University Press: Chengdu, China, 1988; p. 443.
  • Chai, Y.; Wan, Z.-L.; Wang, B.; Guo, H.-Y.; Liu, M.-L. Synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-amino-3-methylpiperidin-1-yl)fluoroquinolone derivatives. Eur. J. Med. Chem. 2009, 44, 4063–4069.
  • Takagi, N.; Fubasami, H.; Matukubo, H. (6,7-Substituted-8-alkoxy-1-cyclopropyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid-O3,O4)bis (acyl-oxy-O)borates and the salts thereof, and methods for their manufacture. EP Patent 0464823 B1, 1992; Chem. Abstr. 1992, 116, 152003e.
  • Azéma, J.; Guidetti, B.; Malet-Martino, M.; Martino, R.; Roques, C. Efficient approach to acyloxymethyl esters of nalidixic acid and in vitro evaluation as intra-ocular prodrugs. Bioorg. Med. Chem. 2006, 14, 2569–2580.
  • Aggarwal, N.; Kumar, R.; Srivastva, C.; Dureja, P.; Khurana, J. M. Synthesis of nalidixic acid based hydrazones as novel pesticides. J. Agric. Food Chem. 2010, 58, 3056–3061.
  • Fathalla, O. A.; Kamel, M.; El-Zahar, M. I.; Refai, M.; Mohei El-Deen, E. M. Synthesis of some new 1,8-naphthyridine derivatives of expected biological activity. Egyptian J. Chem. 2003, 46, 135–152.
  • Aboul-Fadl, T.; Bin-Jubair, F. A. S.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity, and pharmacophoric model building. Eur. J. Med. Chem. 2010, 45, 4578–4586.
  • Aboul-Fadl, T.; Abdel-Aziz, H. A.; Abdel-Hamid, M. K.; Elsaman, T.; Thanassi, J.; Pucci, M. J. Schiff bases of indoline-2,3-dione: Potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA gyrase. J. Mol. 2011, 16, 7864–7879.
  • Manna, K.; Agrawal, Y. K. Design, synthesis, and antitubercular evaluation of novel series of 3-benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin analogs. Eur. J. Med. Chem. 2010, 45, 3831–3839.
  • El-Zahar, M. I.; Kamel, M. M.; Mohei El-Deen, E. M. Synthesis of some novel 3-(n-alkyl carbamoyl) and 3-(1,2,4-triazol-3-yl)-1,8-naphthyridines of anticipated biological activity. Egypt. J. Chem. 2002, 45, 323–344.
  • Ahmed, N. S.; AlFooty, K. O.; Khalifah, S. S. An efficient sonochemical synthesis of novel Schiff’s bases, thiazolidine, and pyrazolidine incorporating 1,8-naphthyridine moiety and their cytotoxic activity against HePG2 cell lines. Sci. World J. 2014, 2014, 1–10.
  • Ahmed, N. S.; AlFooty, K. O.; Khalifah, S. S. Synthesis of 1,8-naphthyridine derivatives under ultrasound irradiation and cytotoxic activity against HepG2 cell lines. J. Chem. 2014, 2014, 1–8.
  • Bhattacharjee, D.; Popp, F. D. Reissert compound studies, XXXVII: Attempts to form reissert compounds from quinazoline and cinnoline. J. Heterocycl. Chem. 1980, 17, 1211–1212.
  • Sheinkman, A. K.; Nezdiiminoga, T. N.; Chmilenko, T. S.; Klyuev, N. A. Naphthyridines in hetarylation reactions. Chem. Heterocycl. Comp. 1986, 22(9), 986–990; Khim. Geterotsiklicheskikh Soedin. 1986, 22(9), 1218–1222.
  • Egawa, H.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Okada, H.; Uno, H.; Matsumoto, J. Pyridonecarboxylic acids as antibacterial agents: Synthesis and antibacterial activity of 7-(3-amino-1-pyrrolidinyl)-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid and its analogs. J. Med. Chem. 1984, 27, 1543–1548.
  • Kohima, K.; Motoyoshi, M. Japan Kotai Tokyo JP 1988, 01,100,603; Chem. Abstr. 1988, 109, 189591.
  • Cooper, C. S.; Klock, P. L.; Chu, D. T. W.; Hardy, D. J.; Swanson, R. N.; Plattner, J. J. Preparation and in vitro and in vivo evaluation of quinolones with selective activity against Gram-positive organisms. J. Med. Chem. 1992, 35, 1392–1398.
  • Nezval, J.; Halačka, K. The enhancing effect of EDTA on the antibacterial activity of nalidixic acid against Pseudomonas aeruginosa. Experientia 1967, 23, 1043–1044.
  • Hoch, U.; Lynch, J.; Sato, Y.; Kashimoto, S.; Kajikawa, F.; Furutani, Y.; Silverman, J. A. Voreloxin, formerly SNS-595, has potent activity against a broad panel of cancer cell lines and in vivo tumor models. Cancer Chemother. Pharmacol. 2009, 64(1), 53–65.
  • Tsuzuki, Y.; Tomita, K.; Shibamori, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure−activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents, part 2. J. Med. Chem. 2004, 47, 2097–2109.
  • Grossi, G.; Di Braccio, M.; Roma, G.; Ballabeni, V.; Tognolini, M.; Barocelli, E. 1,8-naphthyridines, V: Novel N-substituted 5-amino-N,N-diethyl-9-isopropyl [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, as potent anti-inflammatory and/or analgesic agents completely devoid of acute gastrolesivity. Eur. J. Med. Chem. 2005, 40, 155–165.
  • Dianzani, C.; Collino, M.; Gallicchio, M.; Di Braccio, M.; Roma, G.; Fantozzi, R. Effects of anti-inflammatory[1,2,4]triazolo[4,3-a][1,8]naphthyridine derivatives on human stimulated PMN and endothelial cells: an in vitro study. J. Inflamm. (Lond). 2006, 3, 4.
  • Egawa, H.; Miyamoto, T.; Minamida, A.; Nishimura, Y.; Okada, H.; Uno, H.; Matsumoto, J. Pyridonecarboxylic acids as antibacterial agents: Synthesis and antibacterial activity of 7-(3-amino-1-pyrrolidinyl)-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-1, 8-naphthyridine-3-carboxylic acid and its analogs. J. Med. Chem. 1984, 27, 1543–1548.
  • Kohima, K.; Motoyoshi, M. Japan Kokai Tokyo Koho, JP 01,100,603; Chem Abstr. 1988, 109, 189591.
  • Cooper, C. S.; Klock, P. L.; Chu, D. T. W.; Hardy, D. J.; Swanson, R. N.; Plattner, J. J. Preparation and in vitro and in vivo evaluation of quinolones with selective activity against Gram-positive organisms. J. Med. Chem. 1992, 35, 1392–1398.
  • Odajima, O.; Matsumoto, K. Synergistic industrial microbicides containing 2-pyridinethiol-1-oxide (salts) and 2-(4-thiazolyl)benzimidazole. Experientia 1967, 23, 1043–1044.
  • Di Braccio, M.; Grossi, G.; Roma, G.; Piras, D.; Mattioli, F.; Gosmar, M. 1,8-Naphthyridines, VI: Synthesis and anti-inflammatory activity of 5-(alkyl-amino)-N,N-diethyl[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides with a new substitution pattern on the triazole ring. Eur. J. Med. Chem. 2008, 43, 584–594.
  • Bonner, T. I. The molecular basis of muscarinic acetylcholine receptor diversity. Trends Neurosci. 1989, 12, 148–151.
  • Bonner, T. I. Subtypes of muscarinic acetylcholine receptors. Trends Pharmacol. Sci. 1989, 11–15.
  • Levey, A. I. Muscarinic acetylcholine receptor expression in memory circuits: Implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. 1996, 93, 13451–13546.
  • Geula, C. Abnormalities of neural circuitry in Alzheimer's disease: Hippocampus and cortical innervation. Neurology 1998, 51, 518–529.
  • Langmead, C. J.; Watson, J.; Reavill, C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther. 2008, 117(2), 232–243.
  • Ma, L.; Seager, M. A.; Wittmann, M.; Jacobson, M.; Bickel, D.; Burno, M.; Jones, K.; Graufelds, V. K.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.; Danziger, A.; Regan, C.; Flick, R.; Pascarella, D.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley, C. W.; Shipe, W.; Kuduk, S.; Sur, C.; Kinney, G.; Seabrook, G. R.; Raya, W. J. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. USA 2009, 106(37), 15950–15955.
  • Shirey, J. K.; Brady, A. E.; Jones, P. J.; Davis, A. A.; Bridges, T. M.; Kennedy, J. P.; Jadhav, S. B.; Menon, U. N.; Xiang, Z.; Watson, M. L.; Christian, E. P.; Doherty, J. J.; Quirk, M. C.; Snyder, D. H.; Lah, J. J.; Nicolle, M. M.; Lindsley, C. W.; Conn, P. J. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 2009, 29(45), 14271–14286.
  • Kuduk, S. D.; Di Marco, C. N.; Cofre, V.; Pitts, D. R.; Ray, W. J.; Ma, L.; Wittmann, M.; Veng, L.; Seager, M. A.; Koeplinger, K.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M. T. N-Heterocyclic derived M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 20, 1334–1337.
  • Wang, H.; Wang, S.; Cheng, L.; Chen, L.; Wang, Y.; Qing, J.; Huang, S.; Wang, Y.; Lei, X.; Wu, Y.; Ma, Z.; Zhang, L.; Tang, Y. Discovery of imidazo[1,2-α][1,8]naphthyridine derivatives as potential HCV entry inhibitor. ACS Med. Chem. Lett. 2015.
  • Jinan Haohua Industry Co., Ltd., China. 1-Cyclopropyl-6-fluoro-7-chloride-4-oxo-1,4-dihydro-1,8-napthyridine-3-carboxylic acid. 2015, CAS Registry Number: 100361-18-0. http://www.guidechem.com/cas-100/100361-18-0.html
  • Aggarwal, N.; Kumar, R.; Srivastava, C.; Dureja, P.; Khurana, J. M. Synthesis, biological activities and SAR studies of novel 1-Ethyl-7-methyl-4-oxo-1,4-dihydro-[1,8]naphthyridine-3-carboxylic acid based diacyl and sulfonyl acyl hydrazines. Pest. Manag. Sci. 2014, 70(7), 1071–1082.
  • Turner, J. A. Synthesis and herbicidal activity of 1,X-naphthyridinylox-phenoxypropanoic acids. In Synthesis and Chemistry of Agrochemicals II; ACS Symposium Series, Vol. 443, American Chemical Society, 2009; Chapter 17, pp. 214–225.
  • Graf, H.; Franz, L.; Sauter, H.; Ammermann, E.; Pommer, E.-H. Substituted 1,8-naphthyridine derivatives and fungicides containing them. US Patent 4801592 A, 1989.
  • Litvinov, V. P.; Roman, S. V.; Dyachenko, V. D. Naphthyridines: Structure, physicochemical properties, and general methods of synthesis. Usp. Khim. 2000, 69, 218; Russ. Chem. Rev. 2000, 69, 201–220.
  • Chrzastek, L.; Mianowska, B.; Sliwa, W. Synthesis and properties of methyl-, formyl-, and amino-diazaphenanthrene. Aust. J. Chem. 1994, 47, 2129–2133.
  • Bachowska, B.; Zujewska, T. Chemistry and applications of benzonaphthyridines. Arkivoc 2001, 6, 77–84.
  • Naik, T. R. R.; Naik, H. S. B.; Raghavendra, M.; Naik, S. G. K. Synthesis of thieno[2,3-b]benzo[1,8]naphthyridine-2-carboxylic acids under microwave irradiation and interaction with DNA studies. Arkivoc 2006, 15, 84–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.