Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 46, 2016 - Issue 3
613
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Green and highly efficient synthesis of pyranopyrazoles in choline chloride/urea deep eutectic solvent

&
Pages 220-225 | Received 23 Aug 2015, Published online: 06 Feb 2016

References

  • Hailes, H. C. Reaction solvent selection: The potential of water as a solvent for organic transformations. Org. Process Res. Dev. 2007, 11, 114–120.
  • El-Tamany, E. S.; El-Shahed, F. A.; Mohamed, B. H. Synthesis and biological activity of some pyrazole derivatives. J. Serb. Chem. Soc. 1999, 64, 9–18.
  • Ismail, Z. H.; Aly, G. M.; El-Degwi, M. S.; Heiba, H. I.; Ghorab, M. M. Synthesis and insecticidal activity of some new pyranopyrazoles, pyrazolopyranopyrimidines, and pyrazolopyranopyridines. Egypt J. Biotech. 2003, 13, 73–82.
  • Zaki, M. E. A.; Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. 2006, C 61, 1–5.
  • Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Synthesis and molluscicidal activity of new cinnoline and pyrano[2,3-c]pyrazole derivatives. Arch. Pharm. 2006, 339, 456–460.
  • Abdelrazek, F. M.; Metz, P.; Kataeva, O.; Jaeger, A.; El-Mahrouky, S. F. Synthesis and molluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives. Arch. Pharm. 2007, 340, 543–548.
  • (a) Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg. Med. Chem. 2006, 14, 4792–4802; (b) Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Suzuki, T.; Miyata, N. New series of antiprion compounds: Pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J. Med. Chem. 2007, 50, 5053–5056.
  • Sosnovskikh, V. Y.; Barabanov, M. A.; Usachev, B. I.; Irgashev, R. A.; Moshkin, V. S. Synthesis and some properties of 6-di(tri)fluoromethyl- and 5-di(tri)fluoroacetyl-3-methyl-1-phenylpyrano[2,3-c]pyrazol-4(1H)-ones. Russ. Chem. Bull., Int. Ed. 2005, 54, 2846–2850.
  • El-Assiery, S. A.; Sayed, G. H.; Fouda, A. Synthesis of some new annulated pyrazolo-pyrido (or pyrano) pyrimidine, pyrazolopyridine and pyranopyrazole derivatives. Acta Pharm. 2004, 54, 143–150.
  • Rodinovskaya, L. A.; Gromova, A. V.; Shestopalov, A. M.; Nesterov, V. N. Synthesis of 6-amino-4-aryl-5-cyano-3-(3-cyanopyridin-2-ylthiomethyl)-2,4-dihydropyrano[2,3-c]pyrazoles and their hydrogenated analogs: Molecular structure of 6-amino-5-cyano-3-(3-cyano-4,6-dimethylpyridin-2-ylthiomethyl)-4-(2-nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazole. Russ. Chem. Bull., Int. Ed. 2003, 52, 2207–2213.
  • (a) Wu, M.; Feng, Q.; Wan, D.; Ma, J. CTACl as catalyst for four-component one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun. 2013, 43, 1721–1726; (b) Peng, Y.; Song, G.; Dou, R. Surface cleaning under combined microwave and ultrasound irradiation: Flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media. Green Chem. 2006, 8, 573–575; (c) Vasuki, G.; Kumaravel, K. Rapid four-component reactions in water: Synthesis of pyranopyrazoles. Tetrahedron Lett. 2008, 49, 5636–5638; (d) Lehmann, F.; Holm, M.; Laufer, S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem. 2008, 10, 364–367; (e) Mecadon, H.; Rohman, Md. R.; Kharbangar, I.; Laloo, B. M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett. 2011, 52, 3228–3231; (f) Heravi, M. M.; Ghods, A.; Derikvand, F.; Bakhtiari, K.; Bammoharram, F. F. J. Iran. Chem. Soc. 2010, 7, 615–620; (g) Mecadon, H.; Rohman, M. R.; Rajbangshi, M.; Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett. 2011, 52, 2523–2525; (h) Kiyania, H.; Samimib, H. A.; Ghorbania, F.; Esmaielia, S. Curr. Chem. Lett. 2013, 2, 197–206; (i) Bihani, M.; Bora, P. P.; Bez, G.; Askari, H. ACS Sustainable Chem. Eng. 2013, 1, 440–447 (j) Kanagaraj, K.; Pitchumani, K. Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett. 2010, 51, 3312–3316; (k) Siddekha, A.; Nizam, A.; Pasha, M. A. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim. Acta A 2011, 81, 431–440; (l) Madhusudana Reddy, M. B.; Pasha, M. A. One-pot, multicomponent synthesis of 4H-pyrano[2,3-c]pyrazoles in water at 25 °C. Indian J. Chem., Sec. B 2012, 51, 537–541; (m) Madhusudana Reddy, M. B.; Jayashan Kara, V. P.; Pasha, M. A. Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth. Commun. 2010, 40, 2930–2934.
  • Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci. 2012, 14, 38–43.
  • (a) Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties, and applications. Chem. Soc. Rev. 2012, 41, 7108–7146; (b) Carriazo, D.; Serrano, M. C.; Gutiérrez, M. C.; Luisa Ferrer, M.; Del Monte, F. Deep eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 2012, 41, 4996–5014; (c) Abbott, A. P.; Cullis, P. M.; Gibson, M. J.; Harris, R. C.; Raven, E. Novel choline-chloride-based deep-eutectic solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. Green Chem. 2007, 9, 868–872; (d) Maugeri, Z.; Leitner, W.; Domínguez de María, P. Practical separation of alcohol–ester mixtures using deep eutectic solvents. Tetrahedron Lett. 2012, 53, 6968–6971; (e) Handy, S.; Lavender, K. Organic synthesis in deep eutectic solvents: Paal–Knorr reactions. Tetrahedron Lett. 2013, 54, 4377–4379.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71.
  • Sonawane, Y. A.; Phadtare, S. B.; Borse, B. N.; Jagtap A. R.; Shankarling, G. S. Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. Org. Lett. 2010, 12, 1456–1459.
  • Azizi, N.; Dezfooli, S.; Hashemi, M. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq. 2014, 62–67.
  • (a) Moshtaghi, Z. A.; Eskandari, I.; Khavasi, H. R. A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett. 2012, 53, 5519–5522; (b) Moshtaghi, Z. A.; Baradaran, H. S. Montmorillonite K10 clay: An efficient catalyst for Hantzsch synthesis of 1,4‐dihydropyridine derivatives. Synth. Commun. 2008, 38, 290–296; (c) Moshtaghi, Z. A.; Eskandari, I.; Notash, B. An efficient and green procedure for the synthesis of highly substituted polyhydronaphthalene derivatives via a one-pot, multicomponent reaction in aqueous media. Curr. Chem. Lett. 2015, 4, 85–92.
  • Bez, G.; Bora, P.; Bihani, M. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. J. Mol. Cata. B. 2013, 92, 24.
  • El Aleem, M. A.; El-Remaily, A. A. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron 2014, 70, 2971–2975.
  • Guo, R.-Y.; An, Z.-M.; Mo, L.-P.; Yang, S.-T.; Liu, H.-X.; Wang, S.-X.; Zhang, Z.-H. Meglumine-promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron 2013, 69, 9931–9938.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.