Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 46, 2016 - Issue 6
501
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Superbase/saccharide: An ecologically benign catalyst for efficient fixation of CO2 into cyclic carbonates

, , , , &
Pages 497-508 | Received 05 Dec 2015, Published online: 24 Mar 2016

References

  • (a) Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387; (b) Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Carbon dioxide utilization with C–N bond formation: Carbon dioxide capture and subsequent conversion. Energy Environ. Sci. 2012, 5, 6602–6639; (c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge: A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81; (d) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? Angew. Chem. Int. Ed., 2011, 50, 8510–8537 (e) North, M.; Pasquale R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539; (f) Darensbourg, D. J.; Wilson, S. J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem. 2012, 14, 2665–2671; (g) Sonnati, M. O.; Amigoni, S.; Taffin de Givenchy, E. P.; Darmanin, T.; Choulet O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties, and applications. Green Chem. 2013, 15, 283–306; (h) North, M.; Quek, S. C. Z.; Pridmore, N. E.; Whitwood, A. C.; Wu, X. Aluminum(salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling. ACS Catal. 2015, 5 (6), 3398–3402.
  • (a) Decortes, A.; Castilla, A. M.; Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew Chem. Int. Ed. 2010, 49, 9822–9837; (b) Sakakura, T.; Kohno, K. The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 2009, 1312–1330; (c) Yin, S. F.; Shimada, S. Synthesis and structure of bismuth compounds bearing a sulfur-bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from CO2 and propylene oxide. Chem. Commun. 2009, 1136–1138.
  • (a) Kihara, N.; Hara, N.; Endo, T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J. Org. Chem. 1993, 58, 6198–6202; (b) Li, L. P.; Wang, C. M.; Luo, X. Y.; Cui G. K.; Li, H. R. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide. Chem. Commun. 2010, 46, 5960–5962.
  • (a) Calo, V.; Nacci, A.; Monopoli A.; Fanizzi, A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett. 2002, 4, 2561–2563; (b) Buckley, B. R.; Patel A. P.; Wijayantha, K. G. Electrosynthesis of cyclic carbonates from epoxides and atmospheric pressure carbon dioxide. Chem. Commun. 2011, 47, 11888–11890.
  • (a) Sun, J. M.; Fujita, S. I.; Arai, M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 2005, 690, 3490–3497; (b) Zhang, S. J.; Chen, Y. H.; Li, F. W.; Lu, X. M.; Dai W. B.; Mori, R. Fixation and conversion of CO2 using ionic liquids. Catal. Today 2006, 115, 61–69.
  • Alves, M.; Grignard, B.; Gennen, S.; Mereau, R.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic promoted coupling of carbon dioxide with epoxides: A rational investigation of the cocatalytic activity of various hydrogen bond donors. Catal. Sci. Technol. 2015, 5, 4636–4643.
  • (a) Han, L. N.; Park S. W.; Park, D. W. Silica grafted imidazolium-based ionic liquids: Efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy Environ. Sci. 2009, 2, 1286–1292; (b) Zhang Y. G.; Chan, J. Y. G. Sustainable chemistry: Imidazolium salts in biomass conversion and CO2 fixation. Energy Environ. Sci. 2010, 3, 408–417; (c) Peng, J. J.; Deng, Y. Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New. J. Chem. 2001, 25, 639–641; (d) Kim, H. S.; Kim, J. J.; Kim, H.; Kim, H. G. H.; Jang, H. G. Imidazolium zinc tetrahalide–catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal. 2003, 220, 44–46; (e) Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem. Commun. 2003, 896–897; (f) Sun, J. M.; Fujita, S. I.; Zhao, F. Y.; Arai, M. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem. 2004, 6, 613–616; (g) Cho, H. C.; Lee, H. S.; Chun, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem. Commun. 2011, 47, 917–919; (h) Zhao, Y. C.; Yao, C. Q.; Chen, G. W.; Yuan, Q. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor. Green Chem. 2013, 15, 446–452.
  • (a) Sun, J.; Wang, J. Q.; Cheng, W. G.; Zhang, J. X.; Li, X. H.; Zhang S. J.; She, Y. B. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem. 2012, 14, 654–660; (b) Sun, J.; Cheng, W. G.; Fan, W.; Wang, Y. H.; Meng Z. Y.; Zhang, S. J. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today 2009, 148, 361–367; (c) Zhu, A. L.; Jiang, T.; Han, B. X.; Zhang, J. C.; Xie Y.; Ma, X. M. Supported choline chloride / urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem. 2007, 9, 169–172; (d) North M.; Villuendas, P. Influence of support and linker parameters on the activity of silica-supported catalysts for cyclic carbonate synthesis. ChemCatChem 2012, 4, 789–794; (e) Qi, C. R.; Ye, J. W.; Zeng, W.; Jiang, H. F. Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv. Synth. Catal. 2010, 352, 1925–1933; (f) Kleist, W.; Jutz, F.; Maciejewski, M.; Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552–3561.
  • (a) Han, L. N.; Choi, H. J.; Choi, S. J.; Liu, B. Y.; Park, D. W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem. 2011, 13, 1023–1028; (b) Aprile, C.; Giacalone, F.; Agrigento, P.; Liotta, L. F.; Martens, J. A.; Pescarmona, P. P.; Gruttadauria, M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions. ChemSusChem 2011, 4, 1830–1837; (c) Song, J. L.; Zhang, Z. F.; Hu, S. Q.; Wu, T. B.; Jiang, T.; Han, B. X. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates fromepoxides and CO2 under mild conditions. Green Chem. 2009, 11, 1031–1036; (d) Watile, R. A.; Deshmukh, K. M.; Dhake, K. P.; Bhanage, B. M. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diolfunctionalized ionic liquids as a highly active heterogeneous catalyst. Catal. Sci. Technol. 2012, 2, 1051–1055; (e) Xie, Y.; Ding, K. L.; Liu, Z. M.; Li, J. J.; An, G. M.; Tao, R. T.; Sun, Z. Y.; Yang, Z. Z. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions. Chem. Eur. J. 2010, 16, 6687–6692.
  • (a) Kaljurand, I.; Koppel, I. A.; Kutt, A.; Room, E. I.; Rodima, T.; Koppel, I.; Mishima, M.; Leito, I. Experimental gas-phase basicity scale of superbasic phosphazenes. J. Phys. Chem. A. 2007, 111, 1245–1250; (b) Luo, H. M.; Baker, G. A.; Lee, J. S.; Pagni R. M.; Dai, S. Ultrastable superbase-derived protic ionic liquids. J. Phys. Chem. B., 2009, 113, 4181–4183.
  • (a) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 2011, 4, 3971–3975; (b) Kaljurand, I.; Kütt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: Unification of different basicity scale. J. Org. Chem. 2005, 70, 1019–1028; (c) Haav, K.; Saame, J.; Kütt A.; Leito, I. Basicity of phosphanes and diphosphanes in acetonitrile. Eur. J. Org. Chem. 2012, 2167–2172; (d) Cecchi, L.; Sarlo, F. D.; Machetti, F. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as an efficient reagent for the synthesis of isoxazole derivatives from primary nitro compounds and dipolarophiles: The role of the base. Eur. J. Org. Chem. 2006, 4852–4860; (e) Dean, J. A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill, New York, 1998; (f) Sun, J.; Cheng, W. G.; Yang, Z. F.; Wang, J. Q.; Xu, T. T.; Xin, J. Y.; Zhang, S. J. Superbase/cellulose: An environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem. 2014, 16, 3071–3078; (g) Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 2008, 1, 487–493.
  • Shen, Y. M.; Duan, W. L.; Shi, M. Chemical fixation of carbon dioxide aatalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J. Org. Chem. 2003, 68, 1559–1562.
  • (a) Sun, J.; Ren, J. Y.; Zhang, S. J.; Cheng, W. G. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett. 2009, 50, 423–426; (b) Sun, J.; Zhang, S. J.; Cheng, W. G.; Ren, J. Y. Hydroxyl-functionalized ionic liquid: A novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett. 2008, 49, 3588–3591; (c) Sun, J.; Han, L. J.; Cheng, W. G.; Wang, J. Q.; Zhang X. P.; Zhang, S. J. Efficient acid–base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions. ChemSusChem, 2011, 4, 502–507 (d) Zhou, Y. X.; Hu, S. Q.; Ma, X. M.; Liang, S. G.; Jiang, T.; Han, B. X. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. J. Mol. Catal. A: Chem. 2008, 284, 52–57; (e) Cheng, W. G.; Xiao, B. N.; Sun, J.; Dong, K.; Zhang, P.; Zhang, S. J.; Ng, F. T. T. Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2. Tetrahedron Lett. 2015, 56, 1416–1419; (f) Shi, T. Y.; Wang, J. Q.; Sun, J.; Wang, M. H.; Cheng, W. G.; Zhang, S. J. Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids). RSC Adv. 2013, 3, 3726–3732; (g) Wang, J. Q.; Cheng, W. G.; Sun, J.; Shi, T. Y.; Zhang, X. P.; Zhang, S. J. Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids. RSC Adv. 2014, 4, 2360–2367.
  • (a) Song, J. L.; Zhang, B. B.; Zhang, P.; Ma, J.; Liu, J. L.; Fan, H. L.; Jiang, T.; Han, B. X. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. Catal. Today 2012, 183, 130–135; (b) Song, J. L.; Zhang, Z. F.; Han, B. X.; Hu, S. Q.; Li, W. J.; Xie, Y. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green Chem. 2008, 10, 1337–1341; (c) Tharun, J.; Mathai, G.; Kathalikkattil, A. C.; Roshan, R.; Kwak, J. Y.; Park, D. W. Microwave-assisted synthesis of cyclic carbonates by a formic acid/KI catalytic system. Green Chem. 2013, 15, 1673–1677; (d) Wu, Z. L.; Xie, H. B.; Yu, X.; Liu, E. H. Lignin-based green catalyst for the chemical fixation of carbon dioxide with epoxides to form cyclic carbonates under solvent-free conditions. ChemCatChem. 2013, 5, 1328–1333.
  • (a) Wu, X.; Li, Z.; Chen, X. X.; Fossey, J. S.; Jamesc, T. D.; Jiang, Y. B. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 2013, 42, 8032–8048; (b) Hermann, T.; Westhof, E. Saccharride-RNA recognition. Biopolymers 1998, 48, 155–165.
  • Whiteoak, C. J.; Nova, A.; Maseras, F.; Kleij, A. W. Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2 as a feedstock. ChemSusChem. 2012, 5, 2032–2038.
  • Wilhelm, M. E.; Anthofer, M. H.; Cokoja, M.; Markovits, L. I. E.; Herrmann, W. A.; KÜhn, F. E. Cycloaddition of carbon dioxide and epoxides using pentaerythritol and halides as dual catalyst system. ChemSusChem. 2014, 7, 1357–1360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.