Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 13
486
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Biocatalyst CAL-B catalyzed synthesis of modified nucleosides: An overview

, , , , &
Pages 1659-1678 | Received 28 Sep 2018, Accepted 28 Nov 2018, Published online: 31 Jan 2019

References

  • (a) De Clercq, E. Recent Highlights in the Development of New Antiviral Drugs. Curr. Opin. Microbiol. 2005, 8, 552–560. doi:10.1016/j.mib.2005.08.010. (b) Rachakonda, S.; Cartee, L. Challenges in Antimicrobial Drug Discovery and the Potential of Nucleoside Antibiotics. Curr. Med. Chem. 2004, 11, 775–793. doi:10.2174/0929867043455774. (c) Chu, C. K., Ed. Recent Advances in Nucleosides: Chemistry and Chemotherapy, Elsevier Science: New York, 2002.
  • De Clercq, E. A 40-year Journey in Search of Selective Antiviral Chemotherapy. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 1–24. doi:10.1146/annurev-pharmtox-010510-100228.
  • Wengel, J. Synthesis of 3′- C - and 4′- C -Branched Oligodeoxynucleotides and the Development of Locked Nucleic Acid (LNA). Acc. Chem. Res. 1999, 32, 301–310. doi:10.1021/ar980051p.
  • (a) Ford, H. Jr; Dai, F.; Mu, L.; Siddiqui, M. A.; Nicklaus, M. C.; Anderson, L.; Marquez, V. E.; Barchi, J. J. Jr, Adenosine Deaminase Prefers a Distinct Sugar Ring Conformation for Binding and Catalysis: Kinetic and Structural Studies. Biochemistry. 2000, 39, 2581–2592. doi:10.1021/bi992112c.
  • (a) Uhlmann, E.; Peyman, A. Antisense Oligonucleotides: a New Therapeutic Principle. Chem. Rev. 1990, 90, 543–584. doi:10.1021/cr00102a001. (b) Beaucage, S. L.; Iyer, R. P. The Synthesis of Modified Oligonucleotides by the Phosphoramidite Approach and Their Applications. Tetrahedron. 1993, 49, 6123–6194. doi:10.1016/S0040-4020(01)87958-8.
  • Ferrero, M.; Gotor, V. Biocatalytic Selective Modifications of Conventional Nucleosides, carbocyclic Nucleosides, and C-Nucleosides. Chem. Rev. 2000, 100, 4319–4347. doi:10.1021/cr000446y.
  • Toscano, M. D.; Woycechowsky, K. J.; Hilvert, D. Minimalist Active-Site Redesign: Teaching Old Enzymes New Tricks. Angew. Chem. Int. Ed. Engl. 2007, 46, 3212–3236. doi:10.1002/anie.200604205.
  • Uemura, A.; Nozaki, K.; Yamashita, J.; Yasumoto, M. Regioselective Deprotection of 3′,5′-O-acylated Pyrimidine Nucleosides by Lipase and Esterase. Tetrahedron Lett. 1989, 30, 3819–3820. doi:10.1016/S0040-4039(01)80666-3.
  • Singh, H. K.; Cote, G. L.; Sikors, R. S. Enzymatic Regioselective Deacylation of 2′, 3′, 5′-tri-O-Acylribonucleosides: Enzymatic Synthesis of 2′, 3′-di-O-Acylribonucleosides. Tetrahedron Lett. 1993, 34, 5201–5204. doi:10.1016/S0040-4039(00)73952-9.
  • Zinni, M. A.; Rodrı́guez, S. D.; Pontiggia, R. M.; Montserrat, J. M.; Iglesias, L. E.; Iribarren, A. M. Enzymatic Alcoholysis of 3′,5′-di-O-acetyl-2′-Deoxynucleosides. J Mol Catal B: Enzyme. 2004, 29, 129–132. doi:10.1016/j.molcatb.2003.11.017.
  • Roncaglia, D. I.; Schmidt, A. M.; Iglesias, L. E.; Iribarren, A. M. Biotechnol Lett. 2001, 23, 1439–1443. doi:10.1023/A:1011615224704.
  • Diaz-Rodriguez, A.; Fernandez, S.; Lavandera, I.; Ferrero, M.; Gotor, V. Novel and efficient regioselective enzymatic approach to 3′-, 5′- and 3′,5′-di-O-crotonyl 2′-deoxynucleoside derivatives. Tetrahedron Lett. 2005, 46,5835–5838. doi:10.1016/j.tetlet.2005.06.138.
  • Liu, B. K.; Wu, Q.; Xu, J. M.; Lin, X. F. N-Methylimidazole Significantly Improves Lipase-catalysed Acylation of Ribavirin. Chem. Commun. 2007, 0, 295–297. doi:10.1039/B611454G.
  • (a) Gumel, A. M.; Annuar, M. S. M.; Heidelberg, T.; Chisti, Y. Lipase Mediated Synthesis of Sugar Fatty Acid Esters. Process Biochem. 2011, 46, 2079–2090. doi:10.1016/j.procbio.2011.07.021. (b) Nestl, B. M.; Nebel, B. A.; Hauer, B. Recent Progress in Industrial Biocatalysis. Curr. Opin. Chem. Biol. 2011, 15, 187–193. doi:10.1016/j.cbpa.2010.11.019.
  • Anderson, E. M.; Larsson, K. M.; Kirk, O. Biocatal Biotransfor. 1997, 16, 184–204. doi:10.3109/10242429809003198.
  • Prasad, A. K.; Trikha, S.; Parmar, V. S. Nucleoside Synthesis Mediated by Glycosyl Transferring Enzymes. Bioorg. Chem. 1999, 27, 135–154. doi:10.1006/bioo.1998.1127.
  • Michiyo, I. European Patent No. Positionally nonspecific lipase from Candida sp. a method for producing it, its use and a recombinant DNA process for producing it. 1988,287–634.
  • Hoegh, I.; Patkar, S.; Halkier, T.; Hansen, M. T. Can. J. Bot. 1995, 73, 8869–8875. doi:10.1139/b95-333.
  • Patkar, S. A.; Bjorkling, F.; Zyndel, M.; Schulein, M.; Svendsen, A.; Heldt-Hansen, H. P.; Gormsen, E. Indian Journal Chem. 1993, 32B, 76–80.
  • Rogalska, E.; Cudrey, C.; Ferrato, F.; Verger, R. Stereoselective Hydrolysis of Triglycerides by Animal and Microbial Lipases. Chirality. 1993, 5, 24–30. doi:10.1002/chir.530050106.
  • (a) Uppenberg, J.; Patkar, S.; Bergfors, T.; Jones, T. A. Crystallization and Preliminary X-ray Studies of Lipase B from Candida Antarctica. J. Mol. Biol. 1994, 235, 790–791. doi:10.1006/jmbi.1994.1035.
  • Ollis, D. L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.; Franken, S. M.; Harel, M.; Remington, S. J.; Silman, I.; Schrag, J. The Alpha/beta Hydrolase Fold. Protein Eng. 1992, 5, 197–211. doi:10.1093/protein/5.3.197.
  • Martinelle, M.; Hult, K. Kinetics of Acyl Transfer Reactions in Organic Media Catalysed by Candida Antarctica Lipase B. Biochim. Biophys. Acta. 1995, 1251, 191–197. doi:10.1016/0167-4838(95)00096-D.
  • Uppenberg, J.; Ohrner, N.; Norin, M.; Hult, K.; Kleywegt, G. J.; Patkar, S.; Waagen, V.; Anthonsen, T.; Jones, A. Crystallographic and Molecular-modeling Studies of Lipase B from Candida antarctica Reveal a Stereospecificity Pocket for Secondary Alcohols. Biochemistry. 1995, 34, 16838–16851. doi:10.1021/bi00051a035.
  • Arroyo, M.; Sinisterra, J. V. High Enantioselective Esterification of 2-Arylpropionic Acids Catalyzed by Immobilized Lipase from Candida Antarctica: A Mechanistic Approach. J. Org. Chem. 1994, 59, 4410–4417. doi:10.1021/jo00095a014.
  • Heldt-Hansen, H. P.; Ishii, M.; Patkar, S. A.; Hansen, T. T.; Eigtved, P. A New Immobilized Positional Nonspecific Lipase for Fat Modification and Ester Synthesis in Biocatalysis in Agricultural Biotechnology, American Chemical Society: Washington, DC, 1989; pp 158. doi:10.1021/bk-1989-0389.ch011.
  • Bosley, J. A.; Peilow, A. D. Immobilization of Lipases on Porous Polypropylene: Reduction in Esterification Efficiency at Low Loading. J. Amer. Oil Chem. Soc. 1997, 74, 107–111. doi:10.1007/s11746-997-0153-6.
  • Reslow, M.; Adlercreutz, P.; Mattiasson, B. Organic Solvents for Bioorganic Synthesis. Appl. Microbiol. Biotechnol. 1987, 26, 1–8. doi:10.1007/BF00282141.
  • Cordova, A.; Hult, K.; Iversen, T. Biotechnol. Lett. 1997, 19, 15–18. doi:10.1023/A:1018398500281.
  • Pastor, E.; Otero, C.; Ballesteros, A. Enzymatic Preparation of Mono- and Di-Stearin by Glycerolysis of Ethyl Stearate and Direct Esterification of Glycerol in the Presence of a Lipase from Candida Antarctica (Novozym 435). Biocatal. Biotransform. 1995, 12, 147–157. doi:10.3109/10242429508998159.
  • Hansen, T. V.; Waagen, V.; Partali, V.; Anthonsen, H. W.; Anthonsen, T. Co-solvent Enhancement of Enantioselectivity in Lipase-catalysed Hydrolysis of Racemic Esters. A Process for Production of Homochiral C-3 Building Blocks Using Lipase B from Candida Antarctica. Tetrahedron Asymmetry. 1995, 6, 499–504. doi:10.1016/0957-4166(95)00033-L.
  • Orrenius, C.; Norin, T.; Hult, K.; Carrea, G. The Candida Antarctica Lipase B Catalysed Kinetic Resolution of Seudenol in Non-aqueous Media of Controlled Water Activity. Tetrahedron Asymmetry. 1995, 6, 3023–3030. doi:10.1016/0957-4166(95)00399-1.
  • Wang, Z.-Y.; Bi, Y.-H.; Li, X.-Q.; Zong, M.-H. Influence of Substituent Groups in Regioselective Acylation of Nucleosides by Novozym 435 Lipase. Process Biochem. 2013, 48, 1208–1211. doi:10.1016/j.procbio.2013.06.022.
  • Yanhong, B. I.; Wenying, D. U.; Zhaoyu, W.; Linghong, N.; Xirong, Z. Asian J. Chem. 2014, 26, 7043–7048. doi:10.14233/ajchem.2014.17850.
  • (a) Crooke, S. T., Ed. Antisense Drug Technology Principles: Strategies and Applications. CRC Press: Boca Raton, FL, 2008. (b) Sanghvi, Y. S. A Status Update of Modified Oligonucleotides for Chemotherapeutics Applications. In Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, 2011; pp 4.1.1–4.1.22. doi:10.1002/0471142700.nc0401s46.
  • Montero, S. M.; Fernández, S.; Sanghvi, Y. S.; Gotor, V.; Ferrero, M. CAL‐B‐Catalyzed Acylation of Nucleosides and Role of the Sugar Conformation: An Improved Understanding of the Enzyme‐Substrate Recognition. Eur. J. Org. Chem. 2012, 28, 5483–5490. doi:10.1002/ejoc.201200609.
  • Robak, T.; Lech-Maranda, E.; Korycka, A.; Robak, E. Purine Nucleoside Analogs as Immunosuppressive and Antineoplastic Agents: Mechanism of Action and Clinical Activity. Curr. Med. Chem. 2006, 13, 3165–3189. doi:0.2174/092986706778742918.
  • Gao, W.-L.; Li, N.; Zong, M.-H. Highly Regioselective Synthesis of Undecylenic Acid Esters of Purine Nucleosides Catalyzed by Candida antarctica Lipase B. Biotechnol. Lett. 2011, 33, 2233–2240. doi:10.1007/s10529-011-0685-6.
  • Simeo, Y.; Sinisterra, J. V.; Alcantara, A. R. Green Chem. 2009, 11, 855–862. doi:10.1039/B818992G.
  • Kitsuda, K.; Calveras, J.; Nagai, Y.; Higashi, T.; Sugai, T. A Short-step Chemo-enzymatic Synthesis of a Precursor for l-nucleosides from d-Lyxose. J Mol Catal B-Enzym. 2009, 59, 197–200. doi:10.1016/j.molcatb.2009.02.014.
  • Martínez-Montero, S.; Fernández, S.; Rodríguez-Pérez, T.; Sanghvi, Y. S.; Wen, K.; Gotor, V.; Ferrero, M. Improved Synthesis and Isolation of 2′- O -Methyladenosine: Effective and Scalable Enzymatic Separation of 2′/3′- O -Methyladenosine Regioisomers. Eur. J. Org. Chem. 2009, 2009, 3265–3271. doi:10.1002/ejoc.200900348.
  • Qian, X.; Liu, B.; Wu, Q.; Lv, D.; Xian-Fu, L. Facile Synthesis of Novel Mutual Derivatives of Nucleosides and Pyrimidines by Regioselectively Chemo-enzymatic Protocol. Bioorg. Med. Chem. 2008, 16, 5181–5188. doi:10.1016/j.bmc.2008.03.012.
  • Li, N.; Zong, M.-H.; Ma, D. Regioselective Acylation of Nucleosides Catalyzed by Candida Antarctica Lipase B: Enzyme Substrate Recognition. Eur. J. Org. Chem. 2008, 2008, 5375–5378. doi:10.1002/ejoc.200800780.
  • Lavandera, I.; Fernandez, S.; Magdalena, J.; Ferrero, M.; Kazlauskas, R. J.; Gotor, V. An Inverse Substrate Orientation for the Regioselective Acylation of 3',5'-diaminonucleosides Catalyzed by Candida Antarctica Lipase B? Chembiochem. 2005, 6, 1381–1390. doi:10.1002/cbic.200400422.
  • (a) Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. doi:10.1021/cr980032t.
  • Sheldon, R. A.; Lau, R. M.; Sorgedrager, M. J.; Van Rantwijk, F.; Seddon, K. R. Biocatalysis in Ionic Liquids. Green Chem. 2002, 4, 147–151. doi:10.1039/b110008b.
  • Liu, B. K.; Wang, N.; Chen, Z.,C.; Wu, Q.; Xian, F. L. Markedly Enhancing Lipase-catalyzed Synthesis of Nucleoside Drugs' Ester by Using a Mixture System Containing Organic Solvents and Ionic Liquid. Bioorg. Med. Chem. Lett. 2006, 16, 3769–3771. doi:10.1016/j.bmcl.2006.04.054.
  • Capello, M.; Imanishi, L.; Iglesias, L. E.; Iribarren, A. M. Two New Dialkoxycarbonylated Nucleosides Obtained through a Regioselective Enzymatic Alcoholysis. Biotechnol. Lett. 2007, 29, 1217–1220. doi:10.1007/s10529-007-9374-x.
  • GarcíA, J.; FernáNdez, S.; Ferrero, M.; Sanghvi, Y. S.; Gotora, V. Tetrahedron: Asymmetry 2003, 14, 3533–3540. doi:10.1016/j.tetasy.2003.07.009.
  • (a) Martin, P. Ein Neuer Zugang zu 2?-O-Alkylribonucleosiden Und Eigenschaften Deren Oligonucleotide. Helv. Chim. Acta. 1995, 78,486–504. doi:10.1002/hlca.19950780219. (b) Altmann, K.-H.; Martin, P.; Dean, N. M.; Mania, B. P. Second Generation Antisense Oligonucleotides—Inhibition of PKC-α and c-raf Kinase Expression by Chimeric Oligonucleotides Incorporating 6″-Substituted Carbocyclic Nucleosides and 2″-O-Ethylene Glycol Substituted Ribonucleosides. Nucleosides Nucleotides. 1997, 16,917–926. doi: 10.1080/07328319708006108. (c) Grotli, M.; Douglas, M.; Eritja, R.; Sproat, B. S. 2′-O-Propargyl oligoribonucleotides: Synthesis and hybridisation. Tetrahedron. 1998, 54,5899–5914. doi:10.1016/S0040-4020(98)00271-3.
  • Trost, B. M. On Inventing Reactions for Atom Economy. Acc. Chem. Res. 2002, 35, 695–705. doi:10.1021/ar010068z.
  • Greene, T. W.; Wuts, P. G. M. In: Protective Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999; pp 173.
  • Garcıa, J.; Fernandez, S.; Ferrero, M.; Sanghvi, Y. S.; Gotora, V. A mild, efficient and regioselective enzymatic procedure for 5′-O-benzoylation of 2′-deoxynucleosides. Tetrahedron Lett. 2004, 45,1709–1712. doi:10.1016/j.tetlet.2003.12.098.
  • Gray, S. H.; Ainsworth, C. F.; Bell, C. L.; Danyluk, S. S.; MacCoss, M. Synthesis of Deoxyribonucleotidyl (3′-5′) Arabinonucleosides. Nucleos. Nucleot. 1983, 2, 435–452. doi:10.1080/07328318308079409.
  • Nishino, S.; Yamamoto, H.; Nagato, Y.; Ishido, Y. Partial Protection of Carbohydrate Derivatives. Part 19. Highly Regioselective 5′- O -Aroylation of 2′-Deoxyribonucleosides in Terms of Dilution - Drop-by-Drop - Addition Procedure. Nucleos. Nucleot. 1986, 5, 159–168. doi:10.1080/07328318608068670.
  • Zinni, M. A.; Rodrı́guez, S. D.; Pontiggia, R. M.; Montserrat, J. M.; Iglesias, L. E.; Iribarren, A. M. Enzymatic Alcoholysis of 3′,5′-di-O-acetyl-2′-Deoxynucleosides. J Mol. Catal B Enzym. 2004, 29, 129–132. doi:10.1016/j.molcatb.2003.11.017.
  • Salser, J. S.; Balis, M. E. Amino Acids Associated with DNA of Tumors. Cancer Res. 1968, 28, 595–600.
  • Hakimelahi, G. H.; Zarrinehzad, M.; Jarrahpour, A. A.; Sharghi, H. Ring-Open Analogues of Adenine Nucleoside. Aminoacyl Derivatives of Cyclo- and Acyclo-Nucleosides. Helv. Chim. Acta. 1987, 70, 219–231. doi:10.1002/hlca.19870700127.
  • Morris, F.; Gotor, V. Tetrahedron. 1994, 50, 6921–6934. doi:10.1016/S0040-4020(01)81345-4.
  • Singh, S. K.; Sharma, V. K.; Bohra, K.; Olsen, C. E.; Prasad, A. K. Biocatalytic Deacylation Studies on tetra-O-acyl-β-D-xylofuranosyl Nucleosides: synthesis of xylo-LNA Monomers. J. Org. Chem. 2011, 76, 7556–7562. doi:10.1021/jo201060t.
  • Sharma, V. K.; Kumar, M.; Olsen, C. E.; Prasad, A. K. Chemoenzymatic Convergent Synthesis of 2'-O,4'-C-Methyleneribonucleosides. J. Org. Chem. 2014, 79, 6336–6341. doi:10.1021/jo5008338.
  • Kumar, R.; Kumar, M.; Singh, A.; Singh, N.; Maity, J.; Prasad, A. K. Synthesis of Novel C-4'-spiro-oxetano-α-L-Ribonucleosides. Carbohydr. Res. 2017, 445, 88–92. doi:10.1016/j.carres.2017.04.018.
  • Sharma, V. K.; Kumar, M.; Sharma, D.; Olsen, C. E.; Prasad, A. K. Chemoenzymatic Synthesis of C-4′-Spiro-Oxetanoribonucleosides. J. Org. Chem. 2014, 79, 8516–8521. doi:10.1021/jo501655j.
  • Kumar, M.; Sharma, V. K.; Olsen, C. E.; Prasad, A. K. Chemo-enzymatic Synthesis of Bicyclic 3′-Azido- and 3′-Amino-Nucleosides. RSC Adv. 2014, 4, 37231–37235. doi:10.1039/C4RA06805J.
  • Kumar, M.; Sharma, V. K.; Kumar, R.; Prasad, A. K. Biocatalytic Route to C-3'-azido/-hydroxy-C-4'-spiro-Oxetanoribonucleosides. Carbohydr. Res. 2015, 417, 19–26. doi:10.1016/j.carres.2015.08.015.
  • Singh, S. K.; Sharma, V. K.; Olsen, C. E.; Wengel, J.; Parmar, V. S.; Prasad, A. K. Biocatalytic Separation of N-7/N-9 Guanine Nucleosides. J. Org. Chem. 2010, 75, 7932–7935. doi:10.1021/jo101565e.
  • Maity, J.; Shakya, G.; Singh, S. K.; Ravikumar, V. T.; Parmar, V. S.; Prasad, A. K. Efficient and Selective Enzymatic Acylation Reaction: separation of Furanosyl and Pyranosyl Nucleosides. J. Org. Chem. 2008, 73, 5629–5632. doi:10.1021/jo800731u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.