Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 13
408
Views
38
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles

Pages 1679-1707 | Received 02 Dec 2018, Published online: 07 Feb 2019

References

  • (a) Farghaly, A.M.; Soliman, R.; Khalil, M.A.; Bekhit, A.A.; Din, A.; Bekhit, A. Thioglycolic acid and pyrazole derivatives of 4(3H)-quinazolinone: Synthesis and antimicrobial evaluation. Boll. Chem. Farm. 2002, 141, 372–378. (b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57, 478–564. (c) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48, 1235–1258. (d) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48, 1259–1284. (e) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem. 2018, 39, 544–577. (f) Reddy, C.R.; Radhika, L.; Kumar, T.P.; Chandrasekhar, S. First acid-catalyzed entry to O-alkylated hydroximides from benzylic alcohols. Eur. J. Org. Chem., 2011, 30, 5967–5970. (g) Reddy, C.R.; Ranjan, R.; Kumaraswamy, P.; Reddy, M.D.; Grée, R. 1-Aryl propargylic alcohols as handy synthons for the construction of heterocycles and carbocycles. Curr. Org. Chem., 2014, 18, 2603–2645. (h) Kumar, T.P.; Radhika, L.; Haribabu, K.; Kumar, V.N. Pyrrolidine-oxyimides: new chiral catalysts for enantioselective Michael addition of ketones to nitroolefins in water. Tetrahedron: Asymmetry, 2014, 25, 1555–1560.
  • (a) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun. 2014, 49, 86–119. DOI: 10.1016/j.inoche.2014.09.024. (b) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis. Synth. Commun. 2014, 44, 1173–1211. DOI: 10.1080/00397911.2012.760129. (c) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun. 2014, 44, 1019–1042. DOI: 10.1080/00397911.2012.760131. (d) Kaur, N. Microwave-Assisted Synthesis of Five Membered O-Heterocycles. Synth. Commun. 2014, 44, 3483–3508. DOI: 10.1080/00397911.2013.800213. (e) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N-Heterocycles. Synth. Commun. 2014, 44, 3509–3537. DOI: 10.1080/00397911.2013.800214. (f) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N,N-Heterocycles. Synth. Commun. 2014, 44, 3229–3247. DOI: 10.1080/00397911.2013.798666. (g) Párkányi, C.; Schmidt, D. S. Synthesis of 5-Chloro-2-Methyl-3-(5-Methylthiazol-2-yl)-4(3H)-Quinazolinone and Related Compounds with Potential Biological Activity. J. Heterocycl. Chem. 2000, 37, 725–729. DOI: 10.1002/jhet.5570370409. (h) Kaur, N. Ruthenium Catalysis in Six-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1551–1587. DOI: 10.1080/00397911.2018.1457698. (i) Kaur, N. Green Synthesis of Three to Five-Membered O-Heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588–1613. DOI: 10.1080/00397911.2018.1458243. (j) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-Heterocycles. Synth. Commun. 2018, 48, 1715–1738. DOI: 10.1080/00397911.2018.1460671. (k) Kaur, N. Photochemical Mediated Reactions in Five-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 2119–2149.
  • (a) Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.; Hatakeyama, S.; Kim, H.S.; Wataya, Y.; Oshima, Y. Potent antimalarial febrifugine analogues against the plasmodium malaria parasite. J. Med. Chem., 2002, 45, 2563–2570. (b) Uredi, D.; Reddy, M.D.; Watkins, E.B. A unified strategy for the synthesis of β-carbolines, γ-carbolines, and other fused. Azaheteroaromatics under mild, metal-free conditions. Org. Lett., 2018, 20, 6336–6339. (c) Reddy, M.D.; Fronczek, F.R.; Watkins, E.B.; Rh-catalyzed, regioselective, C-H bond activation: access to quinoline branched amines and dimers. Org. Lett., 2016, 18, 5620–5623. (d) Nagesh, N.; Raju, G.; Srinivas, R.; Ramesh, P.; Reddy, M.D.; Reddy, C.R. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and downregulates. c-MYC expression in human cancer cells. Biochimica Biophysica Acta, 2015, 1850, 129–140.
  • (a) Kaur, N. Benign Approaches for the Microwave-Assisted Synthesis of Five-Membered 1,2-N,N-Heterocycles. J. Heterocycl. Chem. 2015, 52, 953–973. DOI: 10.1002/jhet.2129. (b) Kaur, N. Methods for Metal and Non-Metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-Heterocycles. Curr. Organ. s. 2017, 14, 531–556. DOI: 10.2174/1570179413666161021104941. (c) Kaur, N. Photochemical Reactions: Synthesis of Six-Membered N-Heterocycles. Curr. Org. Synth. 2017, 14, 972–998. (d) Kaur, N. Ionic Liquids: Promising but Challenging Solvents for the Synthesis of N-Heterocycles. Mroc. 2017, 14, 3–23. DOI: 10.2174/1570193X13666161019120050. (e) Kaur, N. Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983–1020. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-Heterocycles. Inorg. Nano-Met. Chem. 2017, 47, 163–187. (g) Kaur, N. Copper Catalysts in the Synthesis of Five-Membered N-Polyheterocycles. Curr. Organ. Synthes. 2018, 15, 940–971. (h) Kaur, N. Recent Developments in the Synthesis of Nitrogen Containing Five-Membered Polyheterocycles Using Rhodium Catalysts. Synth. Commun. 2018, 48, 2457–2474.
  • (a) Kaur, N. Metal Catalysts: Applications in Higher Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI: 10.1007/s13738-014-0451-5. (b) Kaur, N. Insight into Microwave-Assisted Synthesis of Benzo Derivatives of Five Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 1269–1300. (c) Kaur, N. Synthesis of Fused Five-membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1379–1410. DOI: 10.1080/00397911.2013.828078. (d) Kaur, N. Microwave-Assisted Synthesis of Seven Membered S-Heterocycles. Synth. Commun. 2014, 44, 3201–3228. DOI: 10.1080/00397911.2013.798665. (e) Kaur, N. Six Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 1–34. (f) Kaur, N. Polycyclic Six Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 35–69. (g) Hazarkhani, H.; Karimi, B. A Facile Synthesis of New 3-(2-Benzimidazoyl)-2-Alkyl-4-(3H)-Quinazolinones under Microwave Irradiation. Tetrahedron. 2003, 59, 4757–4760. DOI: 10.1016/S0040-4020(03)00696-3. (h) Kaur, N. Mercury-Catalyzed Synthesis of Heterocycles. Synth. Commun. 2018, 48, 2715–2749. DOI: 10.1080/00397911.2018.1497657. (i) Kaur, N. Photochemical Irradiation: Seven and Higher Membered O-Heterocycles. Synth. Commun. 2018, 48, 2935–2964. DOI: 10.1080/00397911.2018.1514051. (j) Kaur, N. Synthesis of Seven and Higher Membered Nitrogen Containing Heterocycles Using Photochemical Irradiation. Synth. Commun. 2018, 48, 2815–2849. DOI: 10.1080/00397911.2018.1501488. (k) Kaur, N. Ruthenium Catalyzed Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun. 2019, 99, 82–107.
  • (a) Maarouf, A. R.; El-Bendary, E. R.; Goda, F. E. Synthesis and Evaluation of Some Novel Quinazolinone Derivatives as Diuretic Agents. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 527–532. DOI: 10.1002/ardp.200400869. (b) Brahmachari, G.; Banerjee, B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustainable Chem. Eng. 2014, 2, 411–422. DOI: 10.1021/sc400312n. (c) Brahmachari, G.; Banerjee, B. Facile and Chemically Sustainable One‐Pot Synthesis of a Wide Array of Fused O‐ and N‐Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian J. Org. Chem. 2016, 5, 271–286. (d) Banerjee, B. Recent Developments on Ultrasound-Assisted One-Pot Multicomponent Synthesis of Biologically Relevant Heterocycles. Ultrason. Sonochem. 2017, 35, 15–35.
  • (a) Kaur, N. Microwave-Assisted Synthesis: Fused Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 789–823. DOI: 10.1080/00397911.2013.824984. (b) Kaur, N. Six Membered Heterocycles with Three and Four N-Heteroatoms: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 151–172. (c) Kaur, N. Application of Microwave-Assisted Synthesis in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom. Synth. Commun. 2015, 45, 173–201. DOI: 10.1080/00397911.2013.816734. (d) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six Membered N-Heterocycles. Synth. Commun. 2015, 45, 273–299. DOI: 10.1080/00397911.2013.816735. (e) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo Fused Six-Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 300–330. (f) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun. 2014, 44, 1375–1413. DOI: 10.1080/00397911.2013.772202. (g) Orru, R. V. A.; de Greef, M. Recent Advances in Solution Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds. Synthesis. 2003, 10, 1471–1499.
  • (a) Wasserscheid, P.; Keim, W . Ionic Liquids-New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. Engl. 2000, 39, 3772–3789. (b) Banerjee, B. Recent Developments on Nano-ZnO Catalyzed Synthesis of Bioactive Heterocycles. J. Nanostruct. Chem. 2017, 7, 389–413. DOI: 10.1007/s40097-017-0247-0.
  • (a) Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun. 2001, 23, 2399–2407. DOI: 10.1039/b107270f. (b) Banerjee, B. Recent Developments on Organo-Bicyclo-Bases Catalyzed Multicomponent Synthesis of Biologically Relevant Heterocycles. Curr. Organ. Chem. 2018, 22, 208–233. DOI: 10.2174/1385272821666170703123129. (c) Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An Efficient Tool for the Synthesis of Diverse Bioactive Heterocycles. J. Serb. Chem. Soc. 2018, 83, 1071–1097.
  • (a) Zhao, D.; Wu, M.; Kou, Y.; Min, K. Ionic Liquids: Applications in Catalysis. Catal. Today. 2002, 74, 157–189. DOI: 10.1016/S0920-5861(01)00541-7. (b) Kaur, N. Perspectives of Ionic Liquids Applications for the Synthesis of Five and Six-Membered O,N-Heterocycles. Syn. Commun. 2018, 48, 473–495. DOI: 10.1080/00397911.2017.1406521. (c) Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and Ionic Liquid: An Ideal Combination for Organic Transformations. Chem. Select. 2018, 3, 5283–5295.
  • Wang, Y. Y.; Li, W.; Dai, L. Y. Bronsted Acidic Ionic Liquids as Efficient Reaction Medium for Cyclodehydration of Diethylene Glycol. Chin. J. Chem. 2008, 26, 1390–1394. DOI: 10.1002/cjoc.200890253.
  • (a) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 909–943. DOI: 10.1080/00397911.2013.825808. (b) Kaur, N. Advances in Microwave-Assisted Synthesis for Five Membered N-Heterocycles Synthesis. Synth. Commun. 2015, 45, 432–457. (c) Kaur, N. Microwave-Assisted Synthesis of Five Membered S-Heterocycles. J. Iran. Chem. Soc. 2014, 11, 523–564. DOI: 10.1007/s13738-013-0325-2. (d) Kaur, N. Review on the Synthesis of Six Membered N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 1145–1182. (e) Kaur, N. Greener and Expeditious Synthesis of Fused Six-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1493–1519. (f) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 1599–1631. (g) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. DOI: 10.1080/00397911.2013.828756. (h) Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-Hydroymethylfurfural by Dehydration of Fructose in the Presence of Acidic Ionic Liquid. Catal. Commun. 2008, 9, 1383–1388.
  • (a) Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Bronsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. A: Chem., 2008, 280, 24–28. (b) Reddy, M.D.; Kobori, H.; Mori, T.; Wu, J.; Kawagishi, H.; Watkins, E.B. Gram-scale, stereoselective synthesis and biological evaluation of (+)-armillariol C. J. Natural Products, 2017, 80, 2561–2565. (c) Reddy, C.R.; Valleti, R.R.; Reddy, M.D. A thioannulation approach to substituted thiophenes from Morita Baylis Hillman-acetates of acetylenic aldehydes. J. Org. Chem., 2013, 78, 6495–6502. (d) Reddy, C.R.; Dilipkumar, U.; Reddy, M.D. Novel [4+2]-benzannulation to access substituted benzenes, polycyclic aromatic and benzene-fused heteroaromatic compounds. Org. Lett., 2014, 16, 3792–3795. (e) Reddy, C.R.; Sujatha, P.; Reddy, M.D. Aza-annulation of enynyl azides: a new approach to substituted pyridines. Org. Lett., 2015, 17, 896–899.
  • (a) Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Bronsted acidic ionic liquids as novel catalysts for Prins reaction. Catal. Commun., 2008, 9, 337–341. (b) Venkateshwarlu, R.; Chinnababu, B.; Ramulu, U.; Reddy, K.P.; Reddy, M.D.; Sowjanya, P.; Rao, P.V.; Aravind, S. Synthesis and biological evaluation of (-)-kunstleramide and its derivatives. Med. Chem. Commun., 2017, 8, 394–404. (c) Reddy, C.R.; Reddy, M.D.; Srikanth, B.; Prasad, K.R. Morita-Bailys-Hillman acetates of acetylenic aldehydes: versatile synthons for substituted pyrroles via a metal-free tandem reaction. Org. Biomol. Chem., 2011, 9, 6027–6033. (d) Reddy, C.R.; Reddy, M.D.; Srikanth, B. Phosphine-mediated cascade reaction of azides with MBH-acetates of acetylenic aldehydes to substituted pyrroles: a facile access to N-fused pyrrolo-heterocycles. Org. Biomol. Chem., 2012, 10, 4280–4288. (e) Reddy, C.R.; Krishna, G.; Reddy, M.D. Synthesis of substituted 3-furoates from MBH-acetates of acetylenic aldehydes via tandem isomerization/deacetylation/ cycloisomerization: access to Elliot’s alcohol. Org. Biomol. Chem., 2014, 12, 1664–1670.
  • (a) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-Heteroatoms. Synth. Commun. 2015, 45, 403–431. DOI: 10.1080/00397911.2013.824981. (b) Kaur, N. Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 539–568. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered N-Heterocycles. Synth. Commun. 2014, 44, 2577–2614. (d) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered S-Heterocycles. Synth. Commun. 2014, 44, 2615–2644. DOI: 10.1080/00397911.2013.792354. (e) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered O-Heterocycles. Synth. Commun. 2014, 44, 2739–2755. (f) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. Functionalized Ionic Liquids Catalyzed Direct Aldol Reactions. Tetrahedron. 2007, 63, 1923–1930.
  • Carvalho, P. J.; Alvarez, V. H.; Marrucho, I. M.; Aznar, M.; Coutinho, J. A. P. High Pressure Phase Behavior of Carbon Dioxide in 1-Butyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide and 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquids. J. Supercritical Fluids. 2009, 50, 105–111. DOI: 10.1016/j.supflu.2009.05.008.
  • Le, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. Organic Reactions in Ionic Liquids: A Simple and Highly Regioselective N-Substitution of Pyrrole. Synlett. 2004, 12, 1951–1954. DOI: 10.1055/s-2004-829182.
  • Nara, S. J.; Naik, P. U.; Harjani, J. R.; Salunkhe, M. M. Potential of Ionic Liquids in Greener Methodologies Involving Biocatalysis and Other Synthetically Important Transformations. Indian J. Chem. 2006, 45B, 2257–2268.
  • (a) Kaur, N. Palladium Catalysts: Synthesis of Five-Membered N-Heterocycles Fused with Other Heterocycles. Catal. Rev. 2015, 57, 1–78. (b) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O,O-Heterocycles. Synth. Commun. 2014, 44, 3082–3111. DOI: 10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O-Heterocycles. Synth. Commun. 2014, 44, 3047–3081. DOI: 10.1080/00397911.2013.796383. (d) Nair, V.; Vellalath, S.; Poonoyh, M.; Suresh, E.; Viji, S. N. Heterocyclic Carbene Catalyzed Reaction of Enals and Diaryl-1,2 Diones via Homoenolate: Synthesis of 4,5,5-Trisubstituted γ-Butyrolactones. Synthesis. 2007, 20, 3195–3200.
  • Potewar, T. M.; Siddiqui, S. A.; Lahoti, R. J.; Srinivasan, K. V. Efficient and Rapid Synthesis of 1-Substituted-1H-1,2,3,4-Tetrazoles in the Acidic Ionic Liquid 1-nbutylimidazolium Tetrafluoroborate. Tetrahedron Lett. 2007, 48, 1721–1724. DOI: 10.1016/j.tetlet.2007.01.050.
  • Xu, J. M.; Qian, C.; Liu, B. K.; Wu, Q.; Lin, X. F. A Fast and Highly Efficient Protocol for Michael Addition of N-heterocycles to α,β-Unsaturated Compound Using Basic Ionic Liquid [bmim]OH as Catalyst and Green Solvent. Tetrahedron. 2007, 63, 986–990. DOI: 10.1016/j.tet.2006.11.013.
  • Hutka, M.; Toma, S. Hydrogen-Transfer Reduction of Aromatic Ketones in Basic Ionic Liquids. Monatsh. Chem. 2009, 140, 1189–1194. DOI: 10.1007/s00706-009-0161-3.
  • Ye, C.; Xiao, J. C.; Twamley, B.; LaLonde, A. D.; Norton, M. G.; Shreeve, J. M. Basic Ionic Liquids: Facile Solvents for Carbon-Carbon Bond Formation Reactions and Ready Access to Palladium Nanoparticles. Eur. J. Org. Chem. 2007, 30, 5095–5100. DOI: 10.1002/ejoc.200700502.
  • Xiao, L. F.; Yue, Q. F.; Xia, C. G.; Xu, L. Supported Basic Ionic Liquid: Highly Effective Catalyst for the Synthesis of 1,2-Propylene Glycol from Hydrolysis of Propylene Carbonate. J. Mol. Catal. A: Chem. 2008, 279, 230–234. DOI: 10.1016/j.molcata.2007.03.044.
  • Liebert, T.; Heinze, T. Interaction of Ionic Liquids with Polysaccharides. Solvents and Reaction Media for the Modification of Cellulose. Bio. Resourc. 2008, 3, 576–601.
  • Pinkert, A.; Marsh, K. N.; Pang, S. S.; Staiger, M. P. Ionic Liquids and Their Interaction with Cellulose. Chem. Rev. 2009, 109, 6712–6728. DOI: 10.1021/cr9001947.
  • Kosan, B.; Michels, C.; Meister, F. Dissolution and Forming of Cellulose with Ionic Liquids. Cellulose. 2008, 15, 59–66. DOI: 10.1007/s10570-007-9160-x.
  • Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. Possibilities for the Physical Modification of Cellulose Shapes Using Ionic Liquids. Macromol. Symp. 2009, 280, 112–122. DOI: 10.1002/masy.200950613.
  • Cao, Y.; Li, H.; Zhang, Y.; Zhang, J.; He, J. Structure and Properties of Novel Regenerated Cellulose Films Prepared from Cornhusk Cellulose in Room Temperature Ionic Liquids. J. Appl. Polym. Sci. 2010, 116, 547–554. DOI: 10.1002/app.31273.
  • Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from Cellulose-ionic Liquid Solutions: Preparation, Properties and Comparison with Cellulose-NaOH and Cellulose-NMMO Routes. Carbohydr. Polym. 2011, 83, 1766–1774. DOI: 10.1016/j.carbpol.2010.10.043.
  • Stark, A. Ionic Liquids in the Biorefinery: A Critical Assessment of Their Potential. Energ. Environ. Sci. 2011, 4, 19–32. DOI: 10.1039/C0EE00246A.
  • Mora-Pale, M.; Meli, L.; Doherty, T. V.; Linhardt, R. J.; Dordick, J. S. Room Temperature Ionic Liquids as Emerging Solvents for the Pretreatment of Lignocellulosic Biomass. Biotechnol. Bioeng. 2011, 108, 1229–1245. DOI: 10.1002/bit.23108.
  • (a) Sun, N.; Rodriguez, H.; Rahman, M.; Rogers, R.D. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem. Commun., 2011, 47, 1405-1421. (b) Reddy, M.D.; Uredi, D.; Watkins, E.B. A general method for the metal-free, regioselective, remote C-H halogenation of 8-substituted quinolines. Chem. Sci., 2018, 9, 1782-1788.
  • (a) Yue, C.; Fang, D.; Liu, L.; Yi, T.-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163, 99–121. (b) Sudina, P.R.; Reddy, M.D.; Seema, A. Stereocontrolled total synthesis of nonenolide, J. Natural Products, 2018, 81, 1399–1404.
  • (a) Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41, 40–49. (b) Reddy, C.R.; Dilipkumar, U.; Reddy, M.D.; Rao, N.N. Total synthesis and revision of the absolute configuration of seimatopolide B. Org. Biomol. Chem., 2013, 11, 3355–3364.
  • Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. More Sustainable Approaches for the Synthesis of N-based Heterocycles. Chem. Rev. 2009, 109, 2703–2802. DOI: 10.1021/cr800462w.
  • Smiglak, M.; Metlen, A.; Rogers, R. D. The Second Evolution of Ionic Liquids: From Solvents and Separations to Advanced Materials-Energetic Examples from the Ionic Liquid Cookbook. Acc. Chem. Res. 2007, 40, 1182–1192. DOI: 10.1021/ar7001304.
  • Zorn, D. D.; Boatz, J. A.; Gordon, M. S. Electronic Structure Studies of Tetrazolium-Based Ionic Liquids. J. Phys. Chem. B. 2006, 110, 11110–11119. DOI: 10.1021/jp060854r.
  • Joo, Y.-H.; Gao, H.; Zhang, Y.; Shreeve, J. M. Inorganic or Organic Azide-Containing Hypergolic Ionic Liquids. Inorg. Chem. 2010, 49, 3282–3288. DOI: 10.1021/ic902224t.
  • Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Ionic Liquids as Hypergolic Fuels. Energy Fuels. 2008, 22, 2871–2872. DOI: 10.1021/ef800286b.
  • Shamshina, J. L.; Smiglak, M.; Drab, D. M.; Parker, T. G.; Dykes, H. W. H., Jr.; Di Salvo, R.; Reich, A. J.; Rogers, R. D. Catalytic Ignition of Ionic Liquids for Propellant Applications. Chem. Commun. 2010, 46, 8965–8967. DOI: 10.1039/c0cc02162h.
  • Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem. Int. Ed. Engl. 2006, 45, 3584–3601. DOI: 10.1002/anie.200504236.
  • Lin, J. H.; Zhang, C. P.; Zhu, Z. Q.; Chen, Q. Y.; Xiao, J. C. A Novel Pyrrolidinium Ionic Liquid with 1,1,2,2-Tetrafluoro-2-(1,1,2,2-Tetrafluoroethoxy)Ethanesulfonate Anion as a Recyclable Reaction Medium and Efficient Catalyst for Friedel-Crafts Alkylations of Indoles with Nitroalkenes. J. Fluorine Chem. 2009, 130, 394–398. DOI: 10.1016/j.jfluchem.2009.01.004.
  • Liu, S.; Xie, C.; Yu, S.; Liu, F. Dimerization of Rosin Using Bronsted-Lewis Acidic Ionic Liquid as Catalyst. Catal. Commun. 2008, 9, 2030–2034. DOI: 10.1016/j.catcom.2008.03.045.
  • Chaskar, A. C.; Bhandari, S. R.; Patil, A. B.; Sharma, O. P.; Mayeker, S. Solvent-Free Oxidation of Alcohols with Potassium Persulphate in the Presence of Bronsted Acidic Ionic Liquids. Synth. Commun. 2008, 39, 366–370. DOI: 10.1080/00397910802374117.
  • Chaturvedi, D. Recent Developments on Task Specific Ionic Liquids. Curr. Organ. Chem. 2011, 15, 1236–1248. DOI: 10.2174/138527211795202997.
  • Toma, S.; Meciarova, M.; Sebesta, R. Are Ionic Liquids Suitable Media for Organocatalytic Reactions? Eur. J. Org. Chem. 2009, 3, 321–327.
  • Giernoth, R. Task-Specific Ionic Liquids. Angew. Chem. Int. Ed. Engl. 2010, 49, 2834–2839. DOI: 10.1002/anie.200905981.
  • Wu, B.; Liu, W. W.; Zhang, Y.; Wang, H. Do We Understand the Recyclability of Ionic Liquids? Chemistry. 2009, 15, 1804–1810. DOI: 10.1002/chem.200801509.
  • Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and Biochemical Transformations in Ionic Liquids. Tetrahedron. 2005, 61, 1015–1060. DOI: 10.1016/j.tet.2004.10.070.
  • El Seoud, O. A.; Koschella, A.; Fidale, L. C.; Dorn, S.; Heinze, T. Applications of Ionic Liquids in Carbohydrate Chemistry: A Window of Opportunities. Biomacromolecules. 2007, 8, 2629–2647. DOI: 10.1021/bm070062i.
  • Xu, J. M.; Wu, Q.; Zhang, Q. Y.; Zhang, F.; Fu, X. Basic Ionic Liquid as Catalyst and Reaction Medium: A Rapid and Facile Protocol for Aza-Michael Addition Reactions. Eur. J. Org. Chem. 2007, 2007, 1798–1802. DOI: 10.1002/ejoc.200600999.
  • Chowdhury, S.; Mohan, R. S.; Scott, J. L. Reactivity of Ionic Liquids. Tetrahedron. 2007, 63, 2363–2389. DOI: 10.1016/j.tet.2006.11.001.
  • Gupta, N. S.; Kad, G. L.; Singh, J. Acidic Ionic Liquid [bmim]HSO4: An Efficient Catalyst for Acetalization and Thioacetalization of Carbonyl Compounds and Their Subsequent Deprotection. Catal. Commun. 2007, 8, 1323–1328. DOI: 10.1016/j.catcom.2006.11.030.
  • Wu, H. H.; Yang, F.; Cui, P.; Tang, J.; He, M. Y. An Efficient Procedure for Protection of Carbonyls in Bronsted Acidic Ionic Liquid [hmim]BF4. Tetrahedron Lett. 2004, 45, 4963–4965. DOI: 10.1016/j.tetlet.2004.04.138.
  • Kim, Y. J.; Varma, R. S. Microwave-Assisted Preparation of 1-Butyl-3-Methylimidazolium Tetrachlorogallate and Its Catalytic Use in Acetal Formation under Mild Conditions. Tetrahedron Lett. 2005, 46, 7447–7449. DOI: 10.1016/j.tetlet.2005.08.059.
  • Hajipour, A. R.; Hosseini, P.; Ruoho, A. E. Application of Bu4N + HSO4− As an Ionic Liquid and Acid Catalyst for Thioacetalization of Aldehydes and Ketones. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 2502–2508. DOI: 10.1080/10426500801967757.
  • Cui, S.; Lu, B.; Cai, Q.; Cai, X.; Li, X.; Xiao, X.; Hou, L.; Han, Y. Highly Selective Synthesis of Diphenylmethane with Acidic Ionic Liquids. Ind. Eng. Chem. Res. 2006, 45, 1571–1574. DOI: 10.1021/ie0510268.
  • Hajipour, A. R.; Rafiee, F.; Ruoho, A. E. Facile and Selective Oxidation of Benzylic Alcohols to Their Corresponding Carbonyl Compounds with Sodium Nitrate in the Presence of Bronsted Acidic Ionic Liquids. Synlett. 2007, 7, 1118–1120. DOI: 10.1055/s-2007-973903.
  • Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Bronsted Guanidine Acid-Base Ionic Liquids: Novel Reaction Media for the Palladium-Catalyzed Heck Reaction. Org. Lett. 2006, 8, 391–394. DOI: 10.1021/ol052543p.
  • Zhang, J.; Jiang, T.; Han, B.; Zhu, A.; Ma, X. Knoevenagel Condensation Catalyzed by 1,1,3,3‐Tetramethylguanidium Lactate. Synth. Commun. 2006, 36, 3305–3317. DOI: 10.1080/00397910600941190.
  • Yavari, I.; Kowsari, E. Ionic Liquids as Novel and Recyclable Reaction Media for N-Alkylation of Amino-9,10-Anthraquinones by Trialkyl Phosphites. Tetrahedron Lett. 2007, 48, 3753–3756. DOI: 10.1016/j.tetlet.2007.03.077.
  • (a) Gong, K.; Wang, H. L.; Fang, D.; Liu, Z. L. Basic Ionic Liquid as Catalyst for the Rapid and Green Synthesis of Substituted 2-Amino-2-Chromenes in Aqueous Media. Catal. Commun. 2008, 9, 650–653. DOI: 10.1016/j.catcom.2007.07.010. (b) Gong, K.; Wang, H. L.; Luo, J.; Liu, Z. L. One-Pot Synthesis of Polyfunctionalized Pyrans Catalyzed by 1145 Basic Ionic Liquid in Aqueous Media. J. Heterocyclic Chem. 2009, 46, 1145–1150.
  • Hajipour, A. R.; Khazdooz, L.; Ruoho, A. E. Bronsted Acidic Ionic Liquid as an Efficient Catalyst for Chemoselective Synthesis of 1,1 Diacetates under Solvent Free. Catal. Commun. 2008, 9, 89–96. DOI: 10.1016/j.catcom.2007.05.003.
  • (a) Qiao, K.; Yokoyama, C. Koch Carbonylation of Tertiary Alcohols in the Presence of Acidic Ionic Liquids. Catal. Commun. 2006, 7, 450–453. DOI: 10.1016/j.catcom.2005.12.009. (b) Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. DOI: 10.1021/acs.chemrev.7b00246. (c) Reibstein, R. A More Ethical Chemistry. Curr. Opin. Green Sustain. Chem. 2017, 8, 36–44. DOI: 10.1016/j.cogsc.2017.09.004. (d) Vekariya, R. L. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liquids. 2017, 227, 44–60.
  • (a) Ogoshi, T.; Onodera, T.; Yamagishi, T.; Nakamoto, Y. Green Polymerization of Phenol in Ionic Liquids. Macromolecules. 2008, 41, 8533–8536. DOI: 10.1021/ma801921e. (b) Gericke, M.; Fardim, P.; Heinze, T. Ionic Liquids – Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose. Molecules.2012, 17, 7458–7502.
  • Ramachary, D. B.; Kishor, M. Direct Amino Acid-Catalyzed Cascade Biomimetic Reductive Alkylations: Application to the Asymmetric Synthesis of Hajos-Parrish Ketone Analogues. Org. Biomol. Chem. 2008, 6, 4176–4187. DOI: 10.1039/b807999d.
  • Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y. S.; Davoodnia, A. Brønsted Acid Ionic Liquid [(CH2)4SO3hmim][HSO4] as Novel Catalyst for One-Pot Synthesis of Hantzsch Polyhydroquinoline Derivatives. Synth. Commun. 2010, 40, 523–529. DOI: 10.1080/00397910902994194.
  • Beheshtiha, Y. S.; Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Tavakoli-Hossieni, N. Efficient and Green Synthesis of 1,2-Disubstituted Benzimidazoles and Quinoxalines Using Bronsted Acid Ionic Liquid, [(CH2)4SO3hmim][HSO4], in Water at Room Temperature. Synth. Commun. 2010, 40, 1216–1223. DOI: 10.1080/00397910903062280.
  • Heravi, M. M.; Zakeri, M.; Karimi, N.; Saeedi, M.; Oskooie, H. A.; Tavakoli-Hosieni, N. Acidic Ionic Liquid [(CH2)4SO3hmim][HSO4]: A Green Media for the Simple and Straightforward Synthesis of 2,4,5-Trisubstituted Imidazoles. Synth. Commun. 2010, 40, 1998–2006. DOI: 10.1080/00397910903219377.
  • Heravi, M. M.; Bakhtiari, K.; Zadsirjan, V.; Bamoharram, F. F.; Heravi, O. Aqua Mediated Synthesis of Substituted 2-Amino-4H-Chromenes Catalyzed by Green and Reusable Preyssler Heteropolyacid. Bioorg. Med. Chem. Lett. 2007, 17, 4262–4265. DOI: 10.1016/j.bmcl.2007.05.023.
  • Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. Organic Synthesis in Water: A Green Protocol for the Synthesis of 2-(Cyclohexylamino)-3-Aryl-Indeno[1,2-b]Furan-4-Ones. Mol. Divers. 2009, 13, 385–387. DOI: 10.1007/s11030-009-9122-3.
  • Heravi, M. M.; Derikvand, F.; Haghighi, M.; Bakhtiari, K. On Water: Rapid Knoevenagel Condensation Using Sodium Pyruvate. Lett. Org. Chem. 2006, 3, 297–299.
  • Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. On Water: A Practical and Efficient Synthesis of Quinoxaline Derivatives Catalyzed by CuSO4·5H2O. Catal. Commun. 2007, 8, 211–214. DOI: 10.1016/j.catcom.2006.06.013.
  • Heravi, M. M.; Ansari, P.; Saeedi, M.; Karimi, N.; Tavakoli-Hosseini, N. Green and Practical Synthesis of Benzopyran and 3-Sunstituted Coumarin Derivatives by Brønsted Acid Ionic Liquid [(CH2)4SO3hmim][HSO4]. Bull. Chem. Soc. Ethiop. 2011, 25, 315–320.
  • Chen, L.; Li, Y.-Q.; Huang, X.-J.; Zheng, W.-J. An Efficient One‐Pot Three‐Component Reaction for Synthesis of Spirooxindole Derivatives in Water Media under Catalyst‐Free Condition. Heteroatom Chem. 2009, 20, 91–94. DOI: 10.1002/hc.20516.
  • Chen, L.; Huang, X.-J.; Li, Y.-Q.; Zhou, M.-Y.; Zheng, W.-J. A One-Pot Multicomponent Reaction for the Synthesis of 2-Amino-2-Chromenes Promoted by N,N-Dimethylamino-Functionalized Basic Ionic Liquid Catalysis under Solvent-Free Condition. Monatsh. Chem. 2009, 140, 45–47. DOI: 10.1007/s00706-008-0008-3.
  • Isambert, N.; Duque, M. M. S.; Plaquevent, J.-C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis. Chem. Soc. Rev. 2011, 40, 1347–1357. DOI: 10.1039/C0CS00013B.
  • Khurana, J. M.; Magoo, D. p-TSA-Catalyzed One-Pot Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthen-11-Ones in Ionic Liquid and Neat Conditions. Tetrahedron Lett. 2009, 50, 4777–4780. DOI: 10.1016/j.tetlet.2009.06.029.
  • Zakeri, M.; Heravi, M. M.; Saeedi, M.; Karimi, N.; Oskooie, H. A.; Tavakoli-Hoseini, N. One-Pot Green Procedure for Synthesis of Tetrahydrobenzo[a]-Xanthene-11-One Catalyzed by Brønsted Ionic Liquids under Solvent-Free Conditions. Chin. J. Chem. 2011, 29, 1441–1445. DOI: 10.1002/cjoc.201180240.
  • (a) Hafez, E. A. A.; Elnagdi, M. H. Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline Derivatives. Heterocycles. 1987, 26, 903–907; DOI: 10.3987/R-1987-04-0903. (b) Jiang, Z. Q.; Ji, S. J.; Lu, J.; Yang, J. M. A Mild and Efficient Synthesis of 5-Oxo-5,6,7,8-Tetrahydro-4H-Benzo[b]pyran Derivatives in Room Temperature Ionic Liquids. Chinese J. Chem. 2005, 23, 1085–1089. (c) Fang, D.; Zhang, H. B.; Liu, Z. L. Synthesis of 4H-benzopyrans Catalyzed by Acyclic Acidic Ionic Liquids in Aqueous Media. J. Heterocycl. Chem. 2010, 47, 63–67.
  • Kidwai, M.; Saxena, S.; Rahman Khan, M. K.; Thukral, S. S. Aqua Mediated Synthesis of Substituted 2-Amino-4H-Chromenes and In Vitro Study as Antibacterial Agents. Bioorg. Med. Chem. Lett. 2005, 15, 4295–4298. DOI: 10.1016/j.bmcl.2005.06.041.
  • Shestopalov, A. M.; Niazimbetova, Z. I.; Evans, D. H. Synthesis of 2-Amino-4-Aryl-3-Cyano-6-Methyl-5-Ethoxycarbonyl-4H-Pyrans. Heterocycles. 1999, 51, 1101–1107.
  • Bloxham, J.; Dell, C. P.; Smith, C. W. Preparation of Some New Benzylidenemalononitriles by an SNAr Reaction: Application to Naphtho[1,2-b]pyran Synthesis. Heterocycles. 1994, 38, 399–408. DOI: 10.3987/COM-93-6594.
  • Zhuang, Q. Y.; Rong, L. C.; Shi, D. Q. Synthesis and Crystal Structure of Substituted Naphthopyran. Chin. J. Org. Chem. 2003, 23, 671–673.
  • Plaquevent, J.-C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A.-C. Ionic Liquids: New Targets and Media for Alpha-Amino Acid and Peptide Chemistry. Chem. Rev. 2008, 108, 5035–5060. DOI: 10.1021/cr068218c.
  • Khupse, N. D.; Kumar, A. Ionic Liquids: New Materials with Wide Applications. Indian J. Chem. 2010, 49A, 635–648.
  • Hajipour, A. R.; Rafiee, F. Basic Ionic Liquids. A Short Review. JICS. 2009, 6, 647–678. DOI: 10.1007/BF03246155.
  • Liu, X.; Hu, Y.; Fu, W. Basic Ionic Liquid as Catalyst in Synthesis of Dimethyl 4-(2-(2,6-Bis(methoxycarbonyl)pyridine-4-yl)vinyl)pyridine-2,6-Dicarboxylate. J. Chem. 2018, 2018, 1–4. DOI: 10.1155/2018/9536838.
  • Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D . Dissolution of Cellulose [Correction of Cellose] with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. DOI: 10.1021/ja025790m.
  • Haumann, M.; Riisager, A. Hydroformylation in Room Temperature Ionic Liquids (RTILs): Catalyst and Process Developments. Chem. Rev. 2008, 108, 1474–1497. DOI: 10.1021/cr078374z.
  • Liebert, T.; Heinze, T. J. Exploitation of Reactivity and Selectivity in Cellulose Functionalization Using Unconventional Media for the Design of Products Showing New Superstructures. Biomacromolecules. 2001, 2, 1124–1132. DOI: 10.1021/bm010068m.
  • Liebert, T.; Heinze, T. Tailored Cellulose Esters: Synthesis and Structure Determination. Biomacromolecules. 2005, 6, 333–340. DOI: 10.1021/bm049532o.
  • Rao, M. S.; Chhikara, B. S.; Tiwari, R.; Shirazi, A. N.; Parang, K.; Kumar, A. A Greener Synthesis of 2-Aminochromenes in Ionic Liquid and Evaluation of Their Antiproliferative Activities. Chem. Bio. Inter. 2012, 2, 362–372. DOI: 10.1002/chin.201222113.
  • Newington, I.; Perez-Arlandis, J. M.; Welton, T. Ionic Liquids as Designer Solvents for Nucleophilic Aromatic Substitutions. Org. Lett. 2007, 9, 5247–5250. DOI: 10.1021/ol702435f.
  • Kanagaraj, K.; Pitchumani, K. Solvent-free Multicomponent Synthesis of Pyranopyrazoles: Per-6-Amino-β-Cyclodextrin as a Remarkable Catalyst and Host. Tetrahedron Lett. 2010, 51, 3312–3316. DOI: 10.1016/j.tetlet.2010.04.087.
  • Al-Matar, H. M.; Khalil, K. D.; Adam, A. Y.; Elnagdi, M. H. Green One Pot Solvent-Free Synthesis of Pyrano[2,3-c]-Pyrazoles and Pyrazolo[1,5-a]Pyrimidines. Molecules. 2010, 15, 6619–6629. DOI: 10.3390/molecules15096619.
  • Maleki, B.; Azarifar, D.; Vaghei, R. G.; Veisi, H.; Hojati, S. F.; Gholizadeh, M.; Salehabadi, H.; Moghadam, M. K. 1,3-Dibromo-5,5-Dimethylhydantoin or N-Bromosuccinimide as Efficient Reagents for Chemoselective Deprotection of 1,1-Diacetates under Solvent-Free Conditions. Monatsh. Chem. 2009, 140, 1485–1488. DOI: 10.1007/s00706-009-0212-9.
  • Poliakoff, M.; Fitzpatric, M. J.; Farren, T. R.; Anastas, P. T. Green Chemistry: Science and Politics of Change. Science. 2002, 297, 807–810. DOI: 10.1126/science.297.5582.807.
  • Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly Efficient Solvent-Free Synthesis of Pyranopyrazoles by a Brønsted-Acidic Ionic Liquid as a Green and Reusable Catalyst. J. Chem. Sci. 2012, 124, 1013–1017. DOI: 10.1007/s12039-012-0310-9.
  • Khurana, J. M.; Nand, B.; Kumar, S. Rapid Synthesis of Polyfunctionalized Pyrano[2,3-c]pyrazoles via Multicomponent Condensation in Room-Temperature Ionic Liquids. Synth. Commun. 2011, 41, 405–410. DOI: 10.1002/chin.201130134.
  • Otto, H. H. Synthesis of Some 4H-Pyrano[2,3-c]Pyrazoles. Archiv Der Pharmazie. 1974, 307, 444–447. DOI: 10.1002/ardp.19743070609.
  • Lehmann, F.; Holm, M.; Laufer, S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J. Comb. Chem. 2008, 10, 364–367.
  • Balaskar, R. S.; Gavade, S. N.; Mane, M. S.; Shingate, B. B.; Shingare, M. S.; Mane, D. V. Greener approach towards the facile synthesis of 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanide derivatives at room temperature. Chinese Chem. Lett. 2010, 21, 1175–1179. DOI: 10.1016/j.cclet.2010.06.013.
  • Green, G. R.; Evans, J. M.; Vong, A. K. In Comprehensive Heterocyclic Chemistry II. Katritzky, A. R., Ress, C. W., Scriven, E. F. V., Eds; Pergamon Press: Oxford, U.K., 1995; Vol. 5, pp 469.
  • Yu, J.; Wang, H. Green Synthesis of Pyrano[2,3‐d]‐Pyrimidine Derivatives in Ionic Liquids. Synth. Commun. 2005, 35, 3133–3140. DOI: 10.1080/00397910500282661.
  • Li, Y.-L.; Du, B.-X.; Wang, X.-S.; Shi, D.-Q.; Tu, S.-J. One-Pot Synthesis of Pyrano[2,3-d]pyrimidine Derivatives in Ionic Liquid Medium. J. Chem. Res. 2006, 3, 157–159.
  • Bedair, A. H.; Emam, H. A.; El-Hady, N. A.; Ahmed, K. A. R.; El-Agrody, A. M. Synthesis and Antimicrobial Activities of Novel Naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and Pyrano[3,2-e][1,2,4]triazolo[2,3-c]-Pyrimidine Derivatives. IL Farmaco. 2001, 56, 965–973. DOI: 10.1016/S0014-827X(01)01168-5.
  • Hadfield, J. A.; Pavlidis, V. H.; Perry, P. J.; McGown, A. T. Synthesis and Anticancer Activities of 4-Oxobenzopyrano[2,3-d]Pyrimidines. Anticancer. Drugs. 1999, 10, 591–595. DOI: 10.1097/00001813-199907000-00011.
  • Gupta, A. K.; Kumari, K.; Singh, N.; Singh, D.; Raghuvanshi; Singh, K. N. An Ecosafe Approach to Benzopyranopyrimidines and 4H-chromenes in Ionic Liquid at Room Temperature. Tetrahedron Lett. 2012, 53, 650–653. DOI: 10.1002/chin.201221116.
  • Veeresena, G.; Vie, N.; James, T. D.; Duane, D. M. Efficient Microwave Enhanced Synthesis of 4-Thiazolidinones. Synth. Lett. 2004, 13, 2357–2358.
  • Fraga-Dubreuil, J.; Bazureau, J. P. Efficient Combination of Task-Specific Ionic Liquid and Microwave Dielectric Heating Applied to One-Pot Three Component Synthesis of a Small Library of 4-Thiazolidinones. Tetrahedron. 2003, 59, 6121–6130. DOI: 10.1016/S0040-4020(03)00954-2.
  • Lingampalle, D.; Jawale, D.; Waghmare, R.; Mane, R. Ionic Liquid-Mediated, One-Pot Synthesis for 4-Thiazolidinones. Synth. Commun. 2010, 40, 2397–2401. DOI: 10.1080/00397910903245174.
  • Kroutil, J.; Buděšínský, M. Preparation of Diamino Pseudodisaccharide Derivatives from 1,6-Anhydro-β-d-Hexopyranoses via Aziridine-Ring Cleavage. Carbohydrate Res. 2007, 342, 147–153. DOI: 10.1016/j.carres.2006.11.028.
  • Kanakaraju, S.; Prasanna, B.; Basavoju, S.; Chandramouli, G. V. P. Ionic Liquid Catalyzed One-Pot Multi-Component Synthesis, Characterization and Antibacterial Activity of Novel Chromeno[2,3-d]Pyrimidin-8-Amine Derivatives. J. Mol. Str. 2012, 1017, 60–64. DOI: 10.1016/j.molstruc.2012.02.044.
  • Zhang, X. Y.; Li, Y. Z.; Fan, X. S.; Qu, G. R.; Hu, X. Y.; Wang, J. Multicomponent Reaction in Ionic Liquid: A Novel and Green Synthesis of 1,4-Dihydropyridme Derivatives. J. Chin. Chem. Lett. 2006, 17, 150–152.
  • Sabitha, G.; Reddy, K. B.; Bhikshapathi, M.; Yadav, J. S. TMSI Mediated Prins-Type Cyclization of Ketones with Homoallylic and Homopropargylic Alcohol: Synthesis of 2,2-Disubstituted-, Spirocyclic-4-Iodo-Tetrahydropyrans and 5,6-Dihydro-2H-Pyrans. Tetrahedron Lett. 2006, 47, 2807–2810. DOI: 10.1016/j.tetlet.2006.02.094.
  • (a) Yang, X.; Yang, L.; Wu, L. [hmim][HSO4]: An Efficient and Reusable Catalyst for the Synthesis of Spiro[dibenzo[a,i]-Xanthene-14,3′-Indoline]-2′,8,13-Triones and Spironaphthopyran[2,3-d]Pyrimidine-5,3′-Indolines. Bull. Korean Chem. Soc. 2012, 33, 714–716. DOI: 10.5012/bkcs.2012.33.2.714. (b) Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly Efficient Synthesis of Triazolo[1,2-a]indazole-triones and Novel Spiro Triazolo[1,2-a]indazole-Tetraones under Solvent-Free Conditions. Tetrahedron. 2011, 67, 390–400.
  • (a) Moghaddam, M. M.; Bazgir, A.; Mehdi, A. M.; Ghahremanzadeh, R. Alum (KAl(SO4)2·12H2O) Catalyzed Multicomponent Transformation: Simple, Efficient, and Green Route to Synthesis of Functionalized Spiro[Chromeno[2,3-d]Pyrimidine-5,3′-Indoline]Tetraones in Ionic Liquid Media. Chin. J. Chem. 2012, 30, 709–714. DOI: 10.1002/cjoc.201280014. (b) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M. Facile, Novel Methodology for the Synthesis of Spiro[Pyrrolidin-3,3′-Oxindoles]: Catalyzed Ring Expansion Reactions of Cyclopropanes by Aldimines. Angew. Chem. Int. Ed. 1999, 38, 3186–3189.
  • (a) Figueroa-Villar, J. D.; Carneiro, C. L.; Cruz, E. R. Synthesis of 6-Phenylaminofuro[2,3-d]Pyrimidine-2,4(1H,3H)Diones from Barbiturylbenzylidenes and Isonitriles. Heterocycles. 1992, 34, 891–894. (b) Kobayashi, K.; Tanaka, H.; Tanaka, K.; Yoneda, K.; Morikawa, O.; Konishi, H. One-Step Synthesis of Furo[2,3-d]Pyrimidine-2,4(1H,3H)-Diones Using the CAN-Mediated Furan Ring Formation. Synth. Commun. 2000, 30, 4277–4291. DOI: 10.1080/00397910008087050.
  • Vilsmaier, E.; Baumheier, R.; Lemmert, M. Trapping of Diacceptor-Substituted Methylenecyclopropanes with Isocyanides a Further Application of the Principle of the Two-Fold Nucleophilic Substitution at a Cyclopropane. Synthesis. 1990, 11, 995–998. DOI: 10.1055/s-1990-27073.
  • Kawahara, N.; Nakajima, T.; Itoh, T.; Ogura, H. Simple Syntheses of Pyrrolo- and Furopyrimidine Derivatives. Heterocycles. 1984, 22, 2217–2220. DOI: 10.3987/R-1984-10-2217.
  • Qian, C. Y.; Nishino, H.; Kurosawa, K.; Korp, J. D. Manganese(II) Acetate-Mediated Double 2-Hydroperoxyalkylations of Barbituric Acid and Its Derivatives. J. Org. Chem. 1993, 58, 4448–4451. DOI: 10.1021/jo00068a046.
  • Nair, V.; Vinod, A. U.; Abhilash, N.; Menon, R. S.; Santhi, V.; Varma, R. L.; Viji, S.; Mathew, S.; Srinivas, R. Multicomponent Reactions Involving Zwitterionic Intermediates for the Construction of Heterocyclic Systems: One Pot Synthesis of Aminofurans and Iminolactones. Tetrahedron. 2003, 59, 10279–10286. DOI: 10.1016/j.tet.2003.10.052.
  • Yadav, J. S.; Subba, Reddy, B. V.; Shubashree, S.; Sadashiv, K.; Naidu, J. J. Ionic Liquids-Promoted Multi-Component Reaction: Green Approach for Highly Substituted 2-Aminofuran Derivatives. Synthesis. 2004, 14, 2376–2380. DOI: 10.1055/s-2004-831181.
  • Shaabani, A.; Soleimani, E.; Darvishi, M. Ionic Liquid Promoted One-Pot Synthesis of Furo[2,3-d]Pyrimidine-2,4(1H,3H)Diones. Monatsh. Chem. 2007, 138, 43–46. DOI: 10.1007/s00706-006-0558-1.
  • Shestopalov, A. M.; Zlotin, S. G.; Shestopalov, A. A.; Mortikov, V. Y.; Rodinovskaya, L. A. Cross-Condensation of Derivatives of Cyanoacetic Acid and Carbonyl Compounds. One-Pot Synthesis of Substituted 2-Amino-7-Methyl-5-Oxo-4,5-Dihydropyrano[4,3-b]Pyrans in Ethanol and Ionic Liquid [bmim][PF6]. Russ. Chem. Bull. Int. Ed. 2004, 53, 573–579. DOI: 10.1023/B:RUCB.0000035640.47443.a4.
  • Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665. DOI: 10.1021/cr050948h.
  • Shaterian, H. R.; Oveisi, A. R. A Simple Green Approach to the Synthesis of 2-Amino-5-Oxo-4,5-Dihydropyrano[3,2-c]Chromene-3-Carbonitrile Derivatives Catalyzed by 3-Hydroxypropanaminium Acetate (HPAA) as a New Ionic Liquid. JICS. 2011, 8, 545–552. DOI: 10.1007/BF03249089.
  • Burgard, A.; Lang, H. J.; Gerlach, U. Asymmetric Synthesis of 4-Amino-3,4-Dihydro-2,2-Dimethyl-2H-1-Benzopyrans. Tetrahedron. 1999, 55, 7555–7562. DOI: 10.1016/S0040-4020(99)00376-2.
  • Evans, J. M.; Fake, C. S.; Hamilton, T. C.; Poyser, R. H.; Showell, G. A. Synthesis and Antihypertensive Activity of 6,7-Disubstituted Trans-4-Amino-3,4-Dihydro-2,2-Dimethyl-2H-1-Benzopyran-3-Ols. J. Med. Chem. 1984, 27, 1127–1131. DOI: 10.1021/jm00375a007.
  • Evans, J. M.; Fake, C. S.; Hamilton, T. C.; Poyser, R. H.; Watts, E. A. Synthesis and Antihypertensive Activity of Substituted Trans-4-Amino-3,4-Dihydro-2,2-Dimethyl-2H-1-Benzopyran-3-Ols. J. Med. Chem. 1983, 26, 1582–1589. DOI: 10.1021/jm00365a007.
  • Arnesto, D.; Horspool, W. M.; Martin, N.; Ramos, A.; Seaone, C. Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted 2-Amino-3,5-Dicyano-6-Phenyl-4H-Pyrans. J. Org. Chem. 1989, 54, 3069–3072. DOI: 10.1021/jo00274a021.
  • Shaterian, H. R.; Honarmand, M. Task-Specific Ionic Liquid as the Recyclable Catalyst for the Rapid and Green Synthesis of Dihydropyrano[3,2-c]Chromene Derivatives. Synth. Commun. 2011, 41, 3573–3581. DOI: 10.1002/chin.201218158.
  • Zheng, J.; Li, Y. Basic Ionic Liquid-Catalyzed Multicomponent Synthesis of Tetrahydrobenzo[b]Pyrans and Pyrano[c]Chromenes. Mendeleev Commun. 2011, 21, 280–281. DOI: 10.1016/j.mencom.2011.09.017.
  • Xie, J. W.; Li, P.; Wang, T.; Zhou, F. T. Efficient and Mild Synthesis of Functionalized 2,3-Dihydrofuran Derivatives via Domino Reaction in Water. Tetrahedron Lett. 2011, 52, 2379–2382. DOI: 10.1016/j.tetlet.2011.02.093.
  • Fan, L. P.; Li, P.; Li, X. S.; Xu, D. C.; Ge, M. M.; Zhu, W. D.; Xie, J. W. Facile Domino Access to Chiral Mono-, Bi-, and Tricyclic 2,3-Dihydrofurans. J. Org. Chem. 2010, 75, 8716–8719. DOI: 10.1021/jo101935k.
  • Rueping, M.; Parra, A.; Uria, U.; Besselièvre, F.; Merino, E. Catalytic Asymmetric Domino Michael Addition-Alkylation Reaction: Enantioselective Synthesis of Dihydrofurans. Org. Lett. 2010, 12, 5680–5683. DOI: 10.1021/ol102499r.
  • Yılmaz, M.; Yakut, M.; Pekel, A. T. Synthesis of 2,3-Dihydro-4H-Furo[3,2-c]Chromen-4-Ones and 2,3-Dihydronaphtho[2,3-b]Furan-4,9-Diones by the Radical Cyclizations of Hydroxyenones with Electron-Rich Alkenes Using Manganese(III) Acetate. Synth. Commun. 2008, 38, 914–927. DOI: 10.1080/00397910701845456.
  • Rajesh, S. M.; Perumal, S.; Menéndez, J. C.; Pandian, S.; Murugesan, R. Facile Ionic Liquid-Mediated, Three-Component Sequential Reactions for the Green, Regio- and Diastereo-Selective Synthesis of Furocoumarins. Tetrahedron. 2012, 68, 5631–5636. DOI: 10.1016/j.tet.2012.04.058.
  • Manolov, I.; Maichle-Moessmer, C.; Danchev, N. D. Synthesis, Structure, Toxicological and Pharmacological Investigations of 4-Hydroxycoumarin Derivatives. Eur. J. Med. Chem. 2006, 41, 882–890. DOI: 10.1016/j.ejmech.2006.03.007.
  • Chen, Z.; Zhu, Q.; Su, W. A Novel Sulfonic Acid Functionalized Ionic Liquid Catalyzed Multicomponent Synthesis of 10,11-Dihydrochromeno[4,3-b]Chromene-6,8(7H,9H)-Dione Derivatives in Water. Tetrahedron Lett. 2011, 52, 2601–2604. DOI: 10.1016/j.tetlet.2011.03.059.
  • (a) Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. The Synthesis and Tubulin Binding Activity of Thiophene-Based Analogues of Combretastatin A-4. Bioorg. Med. Chem. Lett. 2001, 11, 2341–2343. (b) Wang, X.‐S.; Shi, D.‐Q.; Yu, H.‐Z.; Wang, G.‐F.; Tu, S.‐J. S.; Shi, D. Q.; Yu, H. Z. Synthesis of 2-Aminochromene Derivatives Catalyzed by KF/Al2O3. Synth. Commun. 2004, 34, 509–514. DOI: 10.1002/chin.200152103.
  • (a) Jin, T. J.; Xiao, J. C.; Wang, S. J.; Li, T. S. An Efficient and Convenient Approach to the Synthesis of Benzopyrans by a Three-Component Coupling of One-Pot Reaction. Synth. Lett. 2003, 13, 2001–2004. DOI: 10.1055/s-2003-42030. (b) Wang, X.-S.; Shi, D.-Q.; Tu, S.-J.; Yao, C.-S. A Convenient Synthesis of 5-Oxo-5,6,7,8-Tetrahydro-4H-Benzo[b]Pyran Derivatives Catalyzed by KF-Alumina. Synth. Commun. 2003, 33, 119–126. . (c) Jin, T. S.; Wang, A. Q.; Wang, X. A Clean One-Pot Synthesis of Tetrahydrobenzo[b]Pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media. Synth. Lett. 2004, 5, 871–873.
  • Shaabani, A.; Teimouri, M. B.; Arab-Ameri, S. A Novel Pseudo Four-Component Reaction: Unexpected Formation of Densely Functionalized Pyrroles. Tetrahedron Lett. 2004, 45, 8409–8413. DOI: 10.1016/j.tetlet.2004.09.039.
  • Shaabani, A.; Teimouri, M. B.; Bijanzadeh, H. R. One-Pot Three-Component Condensation Reactions in Water. An Efficient and Improved Procedure for the Synthesis of Furan Annulated Heterocycles. Monatsh. Chem. 2004, 135, 589–593. DOI: 10.1007/s00706-003-0126-x.
  • Shaabani, A.; Teimouri, M. B.; Bijanzadeh, H. R. A Novel Three-Component Tetrahydrobenzofuran Synthesis. Monatsh. Chem. 2004, 135, 441–446. DOI: 10.1007/s00706-003-0070-9.
  • Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic Liquid Promoted Efficient and Rapid One-Pot Synthesis of Pyran Annulated Heterocyclic Systems. Catal. Lett. 2005, 104, 39–43. DOI: 10.1007/s10562-005-7433-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.