Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 5
422
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis of a novel tetracationic acidic organic salt based on DABCO and its applications as catalyst in the Knoevenagel condensation reactions in water

, &
Pages 724-734 | Received 14 Nov 2018, Published online: 07 Feb 2019

References

  • Clark, J.; Macquarrie, D. Handbook of Green Chemistry and Technology; Blackwell Science Ltd: Oxford, UK, 2002.
  • Melero, J. A.; van Grieken, R.; Morales, G. Advances in the Synthesis and Catalytic Applications of Organosulfonic-functionalized Mesostructured Materials. Chem. Rev. 2006, 106, 3790-3812.
  • Melero, J. A.; Stucky, G. D.; van Grieken, R.; Morales, G. Direct Syntheses of Ordered SBA-15 Mesoporous Materials Containing Arenesulfonic Acid Groups. J. Mater. Chem. 2002, 12, 1664-1670. DOI: 10.1039/b110598c.
  • Vafaeezadeh, M.; Alinezhad, H. Brønsted Acidic Ionic Liquids: Green Catalysts for Essential Organic Reactions. J. Mol. Liq. 2016, 218, 95-105. and references cited therein. DOI: 10.1016/j.molliq.2016.02.017.
  • Wang, B.; Zhou, S.; Sun, Y.; Xu, F.; Sun, R. Salt-Type Organic Acids: A Class of Green Acidic Catalysts in Organic Transformations. Coc. 2011, 15, 1392-1422. and references cited therein. DOI: 10.2174/138527211795378245.
  • Dhepe, P. L.; Fukuoka, A. Cellulose Conversion under Heterogeneous Catalysis. ChemSusChem. 2008, 1, 969-975.
  • Soukup-Hein, R. J.; Remsburg, J. W.; Dasgupta, P. K.; Armstrong, D. W. A General, positive Ion Mode ESI-MS Approach for the Analysis of Singly Charged Inorganic and Organic Anions Using a Dicationic Reagent. Anal. Chem. 2007, 79, 7346-7352.
  • (a) Nemati, F.; Lurestani Pour, H.; A Novel bi-SO3H functional DABCO derived ionic liquid based on nitrate ion as a versatile reagent for rapid mono-nitration of phenols and naphthols. Scientia Iranica C 2015, 22. 2326-2331. (b) Ying, A.; Li, Z.; Yang, J.; Liu, S.; Xu, S.; Yan, H.; Wu, C. DABCO-Based Ionic Liquids: Recyclable Catalysts for aza-Michael Addition of α,β-Unsaturated Amides under Solvent-free Conditions. J. Org. Chem. 2014, 79, 6510-6516. DOI: 10.1021/jo500937a
  • Millefiorini, S.; Tkaczyk, A. H.; Sedev, R.; Efthimiadis, J.; Ralston, J. Electrowetting of Ionic Liquids. J. Am. Chem. Soc. 2006, 128, 3098-3101.
  • Breitbach, Z. S.; Warnke, M. M.; Wanigasekara, E.; Zhang, X.; Armstrong, D. W. Evaluation of Flexible Linear Tricationic Salts as Gas-phase Ion-pairing Reagents for the Detection of Divalent Anions in Positive Mode ESI-MS. Anal. Chem. 2008, 80, 8828-8834.
  • D’Anna, F.; Noto, R. Eur. J. Org. Chem. 2014, 4201-4223. DOI: 10.1002/ejoc.201301871.
  • Li, Z.-M.; Zhou, Y.; Tao, D.-J.; Huang, W.; Chen, X.-S.; Yang, Z. MOR Zeolite Supported Brønsted Acidic Ionic Liquid: An Efficient and Recyclable Heterogeneous Catalyst for Ketalization. RSC Adv. 2014, 4, 12160-12167. DOI: 10.1039/C4RA00092G.
  • (a) Ziyaei Halimehjani, A.; Hooshmand, S. E.; Vali Shamiri, E. Synthesis and Characterization of a Tetracationic Acidic Organic Salt and Its Application in the Synthesis of Bis(indolyl)methanes and Protection of Carbonyl Compounds. RSC Adv. 2015, 5, 21772-21777. (b) Ziyaei Halimehjani, A.; Barati, V. Chemistryselect, 2018, 3, 3024-3028. DOI: 10.1039/C5RA01422K.
  • Tietze, L. F.; Beifuss, U. The knoevenagel Reaction, Comprehensive Organic Synthesis; Oxford: UK, 1991, ch. 1, pp 341-394.
  • Freeman, F. The Chemistry of Malononitrile. Chem. Rev. 1969, 69, 591-624.
  • Shanmugasundram, P.; Prabahar, K. J.; Ramakrishnan, V. T. Heterocycl. Chem. 1993, 30, 1003-1007. DOI: 10.1002/jhet.5570300428.
  • Shanmugasundram, P.; Murugan, P.; Ramakrishnan, V. T.; Srividya, N.; Ramamurthy, P. Heteroatom. Chem. 1996, 7, 17-22.
  • Josephrajan, T.; Ramakrishnan, V. T. Thermal and Microwave Assisted Synthesis of N -aroylamino Acridinediones. Can. J. Chem. 2007, 85, 572-575. DOI: 10.1139/v07-075.
  • Murugan, P.; Shanmugasundaram, P.; Ramakrishnan, V. T.; Venkatachalapathy, B.; Srividya, N.; Ramamurthy, P.; Gunasekaran, K.; Velmurugan, D. Synthesis and Laser Properties of 9-Alkyl-3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8,9,10-Decahydroacridine-1,8-Dione Derivatives. J. Chem. Soc, Perkin Trans. 2. 1998, 999-1004. DOI: 10.1039/a701401e.
  • Josephrajan, T.; Ramakrishnan, V. T.; Kathiravan, G.; Muthumary, J. ARKIVOC. 2005, xi, 124136.
  • Kantevari, S.; Bantu, R.; Nagarapu, L. HClO4-SiO2 and PPA-SiO2 Catalyzed Efficient One-pot Knoevenagel Condensation, Michael Addition and Cyclo-dehydration of Dimedone and Aldehydes in Acetonitrile, aqueous and Solvent Free Conditions: Scope and Limitations. J. Mol. Catal. A: Chem. 2007, 269, 53-57. DOI: 10.1016/j.molcata.2006.12.039.
  • Rao, V. K.; Kumar, M. M.; Kumar, A. An efficient and simple synthesis of tetraketones catalyzed by Yb(OTf)3-SiO2 under solvent free conditions. Ind. J. Chem. 2011, 50B,1128-1135. DOI: 10.1002/chin.201151082
  • Jin, T. S.; Zhang, J. S.; Wang, A. Q.; Li, T. S. Ultrasound-assisted Synthesis of 1,8-dioxo-octahydroxanthene Derivatives Catalyzed by p-Dodecylbenzenesulfonic Acid in Aqueous Media. Ultrason. Sonochem. 2006, 13, 220-224.
  • Darvish, F.; Balalaei, S.; Chadegani, F.; Salehi, P. Synth. Commun. 2007, 37, 1059-1066. DOI: 10.1080/00397910701196520.
  • Ilangovan, A.; Malayappasamy, S.; Muralidharan, S.; Maruthamuthu, S. A Highly Efficient Green Synthesis of 1, 8-dioxo-Octahydroxanthenes. Chem. Cent. J. 2011, 5, 81-86.
  • Li, J.-T.; Li, Y.-W.; Song, Y.-L.; Chen, G.-F. Ultrason. Sonochem. 2012, 19, 745-748.
  • Khan, K. M.; Maharvi, G. M.; Khan, M. T. H.; Shaikh, A. J.; Perveen, S.; Begum, S.; Choudhary, M. I. Tetraketones: A New Class of Tyrosinase Inhibitors. Bioorg. Med. Chem. 2006, 14, 344-351.
  • Jung, D. H.; Lee, Y. R.; Kim, S. H.; Lyoo, W. S. Bull. Korean Chem. Soc. 2009, 30, 1989-1995.
  • Nemati, F.; Heravi, M. M.; Saeedi-Rad, R. Nano-Fe3O4 Encapsulated-Silica Particles Bearing Sulfonic Acid Groups as a Magnetically Separable Catalyst for Highly Efficient Knoevenagel Condensation and Michael Addition Reactions of Aromatic Aldehydes with 1,3-Cyclic Diketones. Chin. J. Catal. 2012, 33, 1825-1831. DOI: 10.1016/S1872-2067(11)60455-5.
  • Khurana, J.; Vij, K. Nickel Nanoparticles. J. Chem. Sci. 2012, 124, 907-912. DOI: 10.1007/s12039-012-0275-8.
  • Azizi, N.; Dezfooli, S.; Hashemi, M. M. Chemoselective Synthesis of Xanthenes and Tetraketones in a Choline Chloride-based Deep Eutectic Solvent. C. R. Chim. 2013, 16, 997-1001. DOI: 10.1016/j.crci.2013.05.002.
  • Tajbakhsh, M.; Heidary, M.; Hosseinzadeh, R. Nano Fe/NaY Zeolite: an Efficient and Reusable Solid-Supported Catalyst for Synthesis of 1-Oxo-Hexahydroxanthene and Tetraketone Derivatives. Res. Chem. Intermed. 2016, 42, 1425-1439. DOI: 10.1007/s11164-015-2094-2.
  • Rastroshan, M.; Sayyahi, S.; Zare-Shahabadi, V.; Badri, R. J. Iranian Chem. Res. 2012, 5, 265-269.
  • Shirini, F.; Daneshvar, N. Introduction of Taurine (2-aminoethanesulfonic Acid) as a Green Bio-organic Catalyst for the Promotion of Organic Reactions under Green Conditions. RSC Adv. 2016, 6, 110190-110205. DOI: 10.1039/C6RA15432H.
  • Rajashekhar, T.; Balijapalli, M.; Kulathu, U.; Sathiyanarayanan, I. J. Mol. Catal. A: Chem 2014, 391, 198-207. DOI: 10.1016/j.molcata.2014.04.030.
  • Maleki, B.; Raei, M.; Akbarzadeh, E.; Ghasemnejad-Bosra, H.; Sedrpoushan, A.; Sedigh Ashrafi, S.; Nabi Dehdashti, M. Chemoselective Synthesis of 2,2′-Arylmethylene Bis-(3-Hydroxy-2-cyclohexenes) (“Tetraketones”) in Hexafluoro-2-Propanol. Org. Prep. Proced. Int. 2016, 48, 62-71. DOI: 10.1080/00304948.2016.1127102.
  • Bojarski, J. T.; Mokrocz, J. L.; Barton, H. J.; Paluchowska, M. H. Adv. Heterocycl. Chem. 1985, 38, 229-297.
  • Undheim, K.; Bennecke, T.; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Boulton, A. J. Comprehensive Heterocyclic Chemistry; Elsevier Pergamon: Oxford, UK, 1996. Vol. 6, Suppl. 93.
  • Von Angerer, S. Product class 12: Pyrimidines. Sci. Synth. 2004, 16, 379-572.
  • Sans, S. R. G.; Chosaz, M. G. Pharmazie. 1988, 43, 827-829.
  • Doran, W. J. Med. Chem 1959, 4, 164-167.
  • Guerin, D. J.; Mazeas, D.; Musale, M. S.; Naguib, F. N. M.; Safarjalani, O. N. A.; Kouni, M. H.; Panzica, R. Uridine Phosphorylase Inhibitors: Chemical Modification of Benzyloxybenzyl-Barbituric Acid and Its Effects on Urdpase Inhibition. Bioorg. Med. Chem. Lett. 1999, 9, 1477-1480.
  • Rajput, J. K.; Kaur, G. Synthesis and Applications of CoFe 2 O 4 Nanoparticles for Multicomponent Reactions. Catal. Sci. Technol. 2014, 4, 142-151. DOI: 10.1039/C3CY00594A.
  • Das, P.; Kumar, A.; Howlader, P.; Mukherjee, P. A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water. Chemistry. 2017, 23, 12565-12574.
  • Choudhary, D.; Agrawal, C.; Khatri, V.; Thakuria, R.; Basak, A. Transition Metal and Base Free Coupling of N-Tosylhydrazones with 1,3-Dicarbonyl Compound. Tetrahedron Lett. 2017, 58, 1132-1136. DOI: 10.1016/j.tetlet.2017.02.001.
  • Navarro, C. A.; Sierra, C. A.; Ochoa-Puentes, C. Evaluation of Sodium Acetate Trihydrate-urea DES as a Benign Reaction Media for the Biginelli Reaction. Unexpected Synthesis of Methylenebis(3-hydroxy-5,5-dimethylcyclohex-2-enones), Hexahydroxanthene-1,8-diones and Hexahydroacridine-1,8-Diones. RSC Adv. 2016, 6, 65355-65365. DOI: 10.1039/C6RA13848A.
  • Ganesan, S.; Kothandapani, J.; Ganesan, A. Zinc Chloride Catalyzed Collective Synthesis of Arylmethylene Bis(3- Hydroxy-2-Cyclohexene-1-Ones) and 1,8-Dioxo-octahydroxanthene/Acridine Derivatives. Loc. 2014, 11, 682-687. DOI: 10.2174/1570178611666140612211155.
  • Bayat, M.; Imanieh, H.; Hossieni, S. H. Synthesis of 2,2′-Arylmethylene Bis (3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) in Aqueous Medium at Room Temperature. Chin. Chem. Lett. 2009, 20, 656.
  • Suzuki, K.; Fukawa, H.; Okugawa, T.; Sekiya, M. Formic Acid Reduction. XXIII. Kinetic Studies on the Formic Acid Reduction of Carbon-Carbon Double Bond Adjacent to Carbonyl. Chem. Pharm. Bull. 1976, 24, 607-612. DOI: 10.1248/cpb.24.607.
  • Tanaka, K.; Chen, X.; Kimura, T.; Yoneda, F. 5-Arylidene 1,3-dimethylbarbiturric Acid Derivatives, mild Organic Oxidants for Allylic and Benzylic Alcohols. Chem. Pharm. Bull. 1988, 36, 60-69. DOI: 10.1248/cpb.36.60.
  • Palasz, A. Monatsh. Chem. 2008, 139, 1397- 1404.
  • Haslinger, E.; Wolschann, P. 1H N.M.R. Spectra and Ensuing Conformational Evidence on Carbon-carbon Double Bonded Systems. (Electrically Neutral Organic Lewis Acids—33). Org. Magn. Reson. 1977, 9, 1. DOI: 10.1002/mrc.1270090102.
  • Teimouri, M. B.; Akbari-Moghaddam, P.; Motaghinezhad, M. Urotropine-bromine Promoted Synthesis of Functionalized Oxaspirotricyclic Furopyrimidines via a Domino Knoevenagel Condensation/Michael Addition/α-Bromination/Williamson Cycloetherification Sequence in Water. Tetrahedron. 2013, 69, 6804-6809. DOI: 10.1016/j.tet.2013.06.030.
  • Fallah, A.; Tajbakhsh, M.; Vahedi, H.; Bekhradnia, A. Natural Phosphate as an Efficient and Green Catalyst for Synthesis of Tetraketone and Xanthene Derivatives. Res. Chem. Intermed. 2017, 43, 29-43. DOI: 10.1007/s11164-016-2603-y.
  • Fan, X.; Hu, X.; Zhang, X.; Wang, J. Ionic Liquid Promoted Knoevenagel and Michael Reactions. Aust. J. Chem. 2004, 57, 1067-1071. DOI: 10.1071/CH04060.
  • Chen, L.; Chung, T.; Narhe, B.; Sun, C. A Novel Mechanistic Study on Ultrasound-Assisted, One-Pot Synthesis of Functionalized Benzimidazo[2,1-b]quinazolin-1(1H)-Ones. ACS Comb Sci Sci. 2016, 18, 162-169.
  • Jin, T. S.; Wang, A. Q.; Ma, H.; Zhang, J. S.; Li, T. S. Indian J. Chem. 2006, 45B, 470-474.
  • Jin, T. S.; Zhang, J. S.; Wang, A. Q.; Li, T. S. Synth. Commun. 2005, 35, 2339-2340. DOI: 10.1080/00397910500187282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.